在原油生产方面,密歇根州在大湖国家中排名第五,目前有一个基于矿石的生产地点,并于2027年将其重新获得:克利夫兰 - 克利夫斯的迪尔伯恩(Dearborn)作品。1克利夫兰 - 克利夫斯的蒂尔登铁矿石矿,位于上半岛,向大湖地区的BF-BOF提供小球。国家通过利用密歇根州健康气候计划以及密歇根州氢和燃料电池电动汽车部署计划来减少重工业和制造业的排放,这些计划得到了一些立法法规,以传输和存储氢气和CO 2。2向前迈进,这些政策也将得到EPA的气候污染减少赠款计划的支持,该计划授予密歇根州及其两个最大的大都市统计领域为气候行动计划开发提供资金。表1:钢供应链生产能力
冰川期至 1500 年代密歇根州目前的地理环境是更新世威斯康星冰川期的直接结果,这是最后一次大规模冰川期,该州完全被冰雪覆盖。随着冰盖逐渐消退,密歇根州南部下游地区大约在 13,000 年前基本无冰。美洲原住民定居并利用了这片冰川后景观,早在 13,000 年前就进入了密歇根州 (Talbot、Wright 和 Nash 2021)。密歇根州上游地区大约在 10,000 年前无冰。密歇根州的地形和土壤是冰川后湖泊、河流、侵蚀和土壤发展过程作用于冰川沉积物的结果,形成了多样化的地形。这些特征包括冰碛、鼓丘、蛇形丘、冰碛丘、冲积平原和昔日的湖床,其间散布着众多湖泊、溪流和洼地,其中包括五大湖中世界上最大的四个淡水湖。
摘要。南极仍有大片科学研究兴趣区域尚未配备仪器。这些区域包括高度动态的冰流和冰川,由于严重的裂缝阻碍了陆路跋涉或飞机着陆,因此很难或不可能安全到达。我们已经开发出一种替代策略来为这些区域配备仪器:一种可以从飞越的飞机上投下的空气动力学传感器。在自由落体过程中,传感器加速到其终端速度 42 m s –1,然后撞击冰川。撞击时,它会部分埋入雪中,同时让天线桅杆高高地伸出地面,以确保较长的使用寿命。在本文中,我们描述了这种飞机可部署传感器的设计和测试结果。最后,我们展示了两项活动的初步结果,这些活动使用 GPS 接收器对西南极洲的派恩岛冰川和南极半岛的斯卡湾这两个难以进入的地区进行测量。
塔斯马尼亚大学,塔斯马尼亚大学,塔斯马尼亚大学,塔斯马尼亚大学,澳大利亚塔斯马尼亚州B旅游,体育与社会系,林肯大学,林肯大学,基督教基督城,C Gateway c Gateway antarctica,坎特伯雷,坎特伯雷,克里斯托尔尔大学,新西兰人Decropport of Gaia ant ant ant ant ant ant ant Artica Magallan Incormation of Magallanians Incorment of Magalloysip科学,社会与政策,渥太华大学,渥太华,安大略省,加拿大安大略省,环境政策小组,瓦格宁根大学和研究,瓦格宁根,荷兰G地球,环境与社会学院,麦克马斯特大学,麦克马斯特大学,安大略省,安大略省,加拿大,加拿大北加拿大Horwegian Internation Internation Internation Internation Internation Centrimate Intressiment for Clitive Introlake Intressiment in Clotimate Internation Centera费尔班克斯,费尔班克斯,阿拉斯加
GF 无麸质 NF 无坚果 DF 无乳制品 VG 纯素 V 素食 以上食品均采用无麸质食材制作。但是,我们的厨房并非完全不含麸质。如果您有食物过敏或敏感,请告知我们。 *这些食品可能是现点现做的,可能含有生的或未煮熟的食材。食用生的或未煮熟的肉类、家禽、海鲜、贝类或鸡蛋可能会增加您患上食源性疾病的风险
摘要:已经提出了多种机制来解释次级冰的产生(SIP),并且已经认可SIP在形成云冰晶体中起着至关重要的作用。但是,大多数天气和气候模型都不考虑其云微物理方案中的SIP。在这项研究中,除了默认的rime分裂(RS)过程外,将超冷的雨/细雨滴(DS)和冰上的分解 - 冰碰撞 - 冰碰撞(BR)的两种SIP过程,即粉碎/碎片化。此外,还引入了两个不同的参数化方案。进行了一系列的灵敏度实验,以研究在欧洲中部开发的基于温暖的深对流云中,SIP如何影响云微物理学和云相位分布。仿真结果表明,云微物理特性受到SIP过程的显着影响。冰晶数浓度(ICNC)增加了20倍以上,并且考虑到SIP过程,表面沉淀降低了20%。有趣的是,发现BR占主导地位,并且BR过程速率分别大于RS和DS过程速率,分别为四个和三个数量级。在实现所有三个SIP过程时,云中的液体像素数馏分在云层内部和云顶部下降,但降低取决于BR方案。模拟深度对流云中冰的增强面(IEF)的峰值为10 2-10 4,并在2 24 8 c处位于所有三个SIP过程,而IEF的温度依赖性对BR方案敏感。但是,如果仅包括RS或RS和DS操作,则IEF是可比的,峰值为6个,位于2 7 8 C,此外,关闭CASCADE效应导致ICNC和冰晶体混合率显着降低。
冰结构的关键在于,在某种条件下,氢键是否以可控的方式集体断裂,即一系列氢键沿一个方向断裂,例如沿图 1 所示的虚线。如果氢键从中心沿六个方向集体断裂,则预计冰将断裂成六块,每块与中心成 60 度角。从机械工程的角度来看,冰应该从任何一点开始具有各向异性。冰的这种机械特性尚未被研究过。在这篇简短的报告中,我们证明,薄冰在接触点受到冲击/撞击时确实会断裂。冰以预期的角度断裂成六块。这可能是第一个例子直接观察到氢键沿预期方向以可控的方式集体断裂。
