这些微生物中的一小部分与人类疾病有关。一种可能负责人类疾病的生物是细菌。某些类型的细菌会引起腹泻和恶心;其他人会引起鼻子和喉咙感染。这些生物通常以少量而发生,不会造成伤害;然而,温暖,不动的水会鼓励这些细菌生长和繁殖。
数据管理和预处理通常会消耗数据科学家所花费的大部分时间。数据架构和数据管道的配置显着影响这项工作的效率。一个新兴的“湖泊”建筑结合了数据湖和数据仓库的特征,消除了管理两层系统的需求。这允许在统一平台上存储和处理原始,结构化和半结构化数据,从而提供更高的性能和将计算与存储相关。在Trase中探索了这种体系结构的能力。Earth,这是商品供应链透明度领域的领先倡议,重点是推动森林砍伐的农产品。本文表明,湖泊架构可以简化复杂的数据管道,同时启用新功能。还表明,这种过渡可以向后兼容,依靠开放标准并降低成本。分析的增强功能包括来自异质来源的数据摄入,数据可发现性,元数据管理,数据共享和管道管理以及数据质量期望的整合。作为另一项案例研究,使用动物运输的卫生记录数据集将图形数据挖掘技术应用于巴西帕拉州的牛肉供应链。采用了用于得出和分析间接采购路径的各种方法,促进了最常见的旅行路线,贸易社区和节点中心性的识别和表征。
1 Tu Dresden,德累斯顿,德国2 Uppsala University,Uppsala,瑞典3国立水上资源研究所(DTU Aqua),丹麦技术大学,公共。 Lyngby,丹麦4 Ecoscience系,Aarhus University,Aarhus,丹麦,这些作者为这项工作做出了同样的贡献。1 Tu Dresden,德累斯顿,德国2 Uppsala University,Uppsala,瑞典3国立水上资源研究所(DTU Aqua),丹麦技术大学,公共。Lyngby,丹麦4 Ecoscience系,Aarhus University,Aarhus,丹麦,这些作者为这项工作做出了同样的贡献。
拥有 75 年历史的 Heart Butte 大坝预计将于 2027 年进行改造工程,这将在未来两到三年内对 Tschida 湖的水位产生重大影响。这座土坝建于 1949 年,用于防洪和灌溉,用于拦截 Heart River,但也成为了一处休闲胜地。Tschida 湖最初于 1950 年蓄水,是大坝形成的水库,水面面积约为 3,400 英亩。负责运营 Heart Butte 大坝和水库的美国内政部垦务局已发现内部侵蚀的可能性,如果不加以控制,可能会导致大坝垮塌。因此,垦务局正在计划对 Heart Butte 大坝进行改造工程,目前正在进行设计和许可程序。大坝的修缮工作将导致 Tschida 湖水位下降约 30 英尺,面积从 3,400 英亩减少到 650 英亩。 10 月 22 日,在齐达湖游客中心举行的开放日活动中,有几家实体提供了有关该项目的信息。“我们希望确保大坝的安全运行,因为这是我们的首要任务,”自然保护协会的 Chris Langland 说。
摘要:快速鉴定和表征来自极端环境的分离物目前是一项挑战,但对于探索地球的生物多样性却非常重要。由于这些分离物原则上可能与已知物种有远亲关系,因此需要采用技术来可靠地鉴定它们所属的生命分支。通过串联质谱法对这些环境分离物进行蛋白质分型提供了一种快速且经济有效的方法,可以使用它们的肽谱进行鉴定。在本研究中,我们记录了第一种用于环境嗜极菌和嗜盐菌分离物的高通量蛋白质分型方法。微生物是从智利高原高海拔安第斯山脉湖泊(海拔 3700 - 4300 米)的样本中分离出来的,这些湖泊代表的地球环境与其他星球的条件相似。总共培养了 66 种微生物,并通过蛋白质分型和 16S rRNA 基因扩增子测序进行了鉴定。两种方法对所有分离物都揭示了相同的属鉴定结果,但三种分离物除外,这三种分离物可能代表尚未根据其肽组进行分类学表征的生物。蛋白质分型能够表明副球菌科和 Chromatiaceae/Alteromonadaceae 科中存在两个潜在的新属,而这些属仅被 16S rRNA 扩增子测序方法所忽略。本文强调,蛋白质分型有可能发现来自极端环境的未描述的微生物。关键词:串联质谱蛋白质分型、阿塔卡马沙漠、高原、高海拔安第斯山脉湖泊、极端微生物、嗜盐菌■简介
fi g u r e 1 nmds的bray – curtis差异矩阵基于β多样性,如Seddna(a)和显微镜(b)从1945年到2010年所测量的。红色至蓝色梯度表示较旧的样本。样本年度和与每个差异矩阵相关的湖泊生理化学条件的矢量均已拟合。矢量长度与相关强度成正比。*** p <.001,** p <.01, * p <.05。NMDS应力值。
流体饱和度的定量评估对于页岩油的形成评估很重要。但是,由于成岩成岩矿物质和孔类型的复杂性,目前尚无有效的方法来识别流体发生状态并定量评估湖泊页岩油的流体饱和度。在本文中,提出了一种基于核磁共振(NMR),X射线衍射(XRD)和扫描电子显微镜(SEM)测量的方法来定量评估流体饱和度的方法,用于对Fengcheng地层的页岩样品,Mahu Sag,Mahu Sag,Mahu Sag,中国Jungag。这些研究表明,页岩油岩石主要含有石英,长石,白云岩,方解石和粘土矿物质,它们都会产生有机和无机孔。流体主要以沥青,粘土结合的水,结合水,结合油和可移动油的形式出现。根据这些实验的发现,提出了混合的岩石指数(MI)和泥指数(SI)将页岩油地层分为三种类型,包括沙子,白云岩页岩和泥岩。a t 1 -t 2 2d 2d NMR流体的出现状态表征图被建立,以通过MI,SI和NMR特性识别不同的流体。此外,提出了一种方法来定量计算不同地层中页岩油的结合和可移动流体的系数。最后,提出的方法被成功地应用于河谷形成中的湖间页岩油中,以鉴定流体的发生状态并定量评估流体饱和度。
摘要目的:在变暖湖泊中管理淡水渔业是具有挑战性的,因为气候变化会影响垂钓者,鱼类及其相互作用。方法:我们将当前和未来湖泊温度的最新模型与休闲渔业的最新模型相结合,从三个美国中北部州(密歇根州,明尼苏达州和威斯康星州)中的587个湖泊中获取数据,以评估休闲渔业的热组成如何随着温度,冰覆盖和湖泊的功能而变化。结果:我们发现,属于温水热量行会(最终温度偏爱[FTP]> 25°C)的娱乐钓鱼捕捞中鱼类比例(WCS),随着年平均湖泊表面温度的增加,随着调查冰的覆盖而降低。但是,我们还发现WCS随湖泊面积和深度增加而降低。使用本世纪中叶(2040–2060)水温和冰的投影,同时保持所有其他变量恒定,我们预测WCS可能会随着气候温暖而增加,但是这种显着的热异质性将持续存在。结论:大型(> 100公顷)和深(> 10 m)的湖泊,以及那些凉爽(<3700年的年增长度周期)预测的未来温度可能会容纳冷水的热避免(FTP = 19-25°C)和Coldwater(FTP <19°C)(FTP <19°C),因为平均湖泊的温度越来越多,可以抗拒造成的湖泊,从而抗拒渔业,以抗拒渔业,以抗拒渔业的变化。较小,更快速变暖的湖泊的经理可能需要考虑接受或指导新兴的温水捕鱼机会的策略。我们建议,不同湖泊景观中气候适应的最可行的途径可能是在可能的情况下抵抗温水转移,并在必要时接受或指导或指导暖水捕捞机会的兴起。
在全球变化中,许多动物种群正在下降。这些下降因与极端温度有关的大规模死亡事件而加剧了这些下降。尽管预计在21世纪的温度会升高,但很少有方法可以研究气候变化是否会加速生态灾难的发生。,我们对北部温带湖泊的鱼死亡率事件与并发水和空气温度填充之间建立了建模。水温和空气温度都是死亡率事件的可靠预测指标。基于水和空气温度气候预测,模型预测!在2100的频率中分别增加了6至34倍的频率。我们的建模方法揭示了温度上升与实时展开的生态灾难的频率之间的密切关联。
引言和背景:理解火星气候发展中最重要的综合性之一是似乎高度矛盾的双重情景 - 诺阿西(Ln)(Ln)(Ln) - 过时的hesperian(eh)环境气候和历史(图。1)。是广泛的河谷网络(VN)及其经常相关的封闭式湖泊(CBL)和开放式湖泊(OBL)[1-3]的广泛案例和丰富的地理证据[1-3],并与高度的影响曲局和Landgrada-teisis compland/and and-semient and and and and and and and and and and and and and and Arifient and Ariend and Ariend and Ariend and Ariid a”气候”(WW模型)[5]具有平均年度温度(MAT)> 273K,并且降雨超过LN-EH中的Regolith引起径流并形成VN-CBL-OBL的渗透能力,然后再过渡到今天[6] [6]。另一方面,全局临床模型(GCM)指出了相对于今天(微弱的年轻太阳; fys)[7-9]的低太阳能死亡的重要性[7-9],并预测了MAT 〜225 K(图。1)和绝热冷却效果(ACE),导致高地中的雪和冰的沉积和保留[7-9]。在这些冷冰(CI)模型中,环境气候在水的273 K熔点下方48 K(图1),并且在没有某种瞬时因子的情况下显得稳定,以诱导IH和径流熔化以产生VN- OBL-CBL。