商业和工业 (C&I) 能源效率计划通常提供投资组合节省的一半以上,其节省的能源比 2021 年高出 14,218 兆瓦时。因此,2022 年的节省量为 169,889 兆瓦时,包括 NEEA 的估计节省量,增加了 26,968 兆瓦时,同比增长 19%。仅爱达荷电力的能源效率计划的节省量(不包括 NEEA 节省量)在 2022 年就为 145,440 兆瓦时,在 2021 年为 126,102 兆瓦时,同比增长 15%。总体而言,由于 COVID-19 限制的放宽,2022 年在能源效率计划参与方面的挑战性比 2021 年要小,但供应链问题、更高的劳动力和材料成本以及住宅照明市场的成熟度继续对计划参与造成下行压力。
鉴于供应方面存在这种分歧空间,而且我们相当准确地知道需求发生了什么(考虑到对当前国民收入估计可能会有一些(小的)修正,分歧空间很小),乐观主义者和悲观主义者对经济闲置产能的估计——“产出缺口”——在乐观主义者和悲观主义者的数字之间差异巨大。为什么这很重要?首先,因为“大”的产出缺口可能表明公共财政的漏洞相对较小,需要通过削减开支和增加税收来弥补,反之亦然:“小”的产出缺口意味着估计的结构性预算赤字“大”。其次,因为产出缺口的大小将决定在产能限制开始产生通胀压力之前就业和收入可以增长多少。
摘要。achalasia是一种罕见的食管运动障碍,主要由症状的基本三合会表现出来:吞咽困难,反流和外部疼痛。患者经常忽略多年的症状,或者因症状类似的重叠疾病而接受治疗,例如GERD,胃炎或各种肺部疾病,从哮喘到阻塞性肺部疾病。常见的并发症是导致肺炎的弹性,这些患者通常会从肺病学家转到胃肠病学家寻找诊断和治愈。这项研究表明,患者接受了严重的,巨质,巨型雌性和食管胸膜尾声的严重并发症。案例研究强调了多学科方法的重要性,选择正确的治疗方法以及对情况的客观评估,而当我们决定一种选择时,而另一种选择则是唯一可持续的选择。在这种情况下,这是一种复杂的重症监护方法。
全球有超过 17% 的人口无法用电,其中大多数居住在撒哈拉以南非洲和南亚的农村地区。微电网技术是解决农村和偏远地区电气化问题的一个有前途的解决方案;然而,不断增长的电力需求仍然是一个巨大的挑战,导致严重的停电。需求侧管理是应对挑战不可或缺的工具。本文采用基于激励措施和分时电价的数学模型,使用从坦桑尼亚阿鲁沙一个偏远村庄 Ngurdoto 太阳能微电网收集的数据来模拟住宅客户的日常用电模式。根据需求价格弹性的概念评估了客户对价格上涨的响应能力。使用两种需求响应策略,即负荷转移 (LS) 和计划负荷减少 (SLR),结果表明 LS 可分别实现高达 4.87% 的节能、19.23% 的成本节省以及约 31% 和 19% 的峰值降低和功率因数提高。 SLR 方法可节省约 19% 的能源、节省 49% 的成本并提高 24% 的功率因数。因此,本研究的结果可能会使系统比发展中国家目前的公用事业更高效、更稳定。
疗程。参与者被随机分配到 tofersen(20、40、60 或 100 毫克)或安慰剂,在 12 周内分 5 次鞘内给药。在接受最高剂量 tofersen 的患者中,脑脊液 (CSF) 中的 SOD1 水平显著降低。虽然该试验不足以证明临床疗效,但一些接受治疗的患者也显示出临床功能和肌肉力量改善的证据。“我们目前正在进行一项 III 期研究,以研究 tofersen 的疗效和安全性,”Miller 说。“这项研究招募了快速进展和缓慢进展的患者,以便我们充分了解该药物的潜力。”在第二项研究中,两名患有 SOD1 ALS 的患者接受了 SOD1 靶向 microRNA,递送到
摘要 近几年来,我们对 ALS 疾病分子机制的理解取得了长足进步,并迈出了将新研究成果(包括基因治疗方法)转化为临床实践的第一步。同样,在日益复杂的多学科行动背景下,辅助技术的最新出现也大大提高了采用更加个性化的支持和对症治疗方法的可能性,而这仍然是 ALS 管理的基石。在这种快速发展的背景下,我们在此全面介绍了有助于我们了解 ALS 发病机制的最新研究、临床试验的最新结果以及改善 ALS 患者临床管理的未来方向。
大多数日常任务都需要同时控制双手。在这里,我们使用从四肢瘫痪参与者的双侧运动和体感皮层记录的多单元活动来展示双手手势的同时分类。使用针对每只手分别训练的分层线性判别模型对尝试的手势进行分类。在一项在线实验中,手势被连续分类并用于控制两个机械臂进行中心向外运动任务。需要保持一只手静止的双手试验产生了最佳表现(70.6%),其次是对称运动试验(50%)和非对称运动试验(22.7%)。我们的结果表明,可以使用两个独立训练的手部模型同时解码双手的手势,但随着双手手势组合的复杂性增加,使用这种方法进行在线控制变得更加困难。这项研究展示了使用双侧皮层内脑机接口恢复双手同时控制的潜力。
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄
线是由贻贝足分泌的液态贻贝足蛋白 (Mfps) 产生的。这些 Mfps 由腺体通过注塑反应组装和制造。[3] 贻贝的足压在表面形成真空室,从而推动流体 Mfps 的输送。据信,局限于斑块中的 Mfps,例如 Mfp-2、Mfp-3、Mfp-4 和 Mfp-5,在暴露于盐水时会形成凝聚层。所有 Mfps 都含有翻译后氨基酸 DOPA,而 mfp-5 含有最大浓度的 DOPA 残基(30 mol%)并导致强粘附。 [4] 据报道,MFP 的凝聚以多种方式发生,例如由静电相互作用驱动的复杂凝聚,如 MFP-131 和 MFP-151 的聚离子中所揭示的那样,[5] 以及由静电和/或疏水力驱动的自凝聚,如 MFP-3S 中所揭示的那样。[6]
糖、强化漂白面粉(小麦粉、麦芽大麦粉、烟酸、还原铁、硝酸硫胺素、核黄素、叶酸)、棕榈油和大豆油、葡萄糖、少于 2% 的:硫酸铝、小苏打、食品改性淀粉、瓜尔胶、磷酸一钙、单甘油酯、天然和人工香料、聚山梨醇酯 60、丙二醇酯、红 40、盐、磷酸铝钠、大豆粉、大豆卵磷脂、黄原胶、黄 5。