都道府県事业者名/屋屋号市区町村・町名业种 取组段阶 东京都 TRC合同会社 足立区栗原 农业・林业 二つ星 东京都株式会社suパイスワークスホールディングsu 台东区浅草桥 农业・林业 二つ星 都银座农园株式会社 中央区银座农业·林业二つ星 东京都有限公司 中央区银座 农业·林业二つ星 东京都医疗AI推进机构株式会社 中央区日本桥大伝马町 农业·林业二つ星 都 梅村ワタナ/ムエタイハウsu 文京区大冢农业・林业 二つ星东京都株式会社 ウミガメ 豊岛区西池袋 农业・林业 二つ星 东京都 JapanGold 株式会社 港区赤坂鉱业・采石业・砂利采取业 二つ星 东京都株式会社 中央区日本桥 鉱业・采石业・砂利采取业 二つ星 东京都株式会社 广瀬 防水 あきる野市伊奈建设业 二つ星 东京都有限公司 カネショウ あきる野市戸仓建设业 二つ星东京都株式会社FAITHFUL あきる野市山田建设业二つ星东京都株式会社日栄测量设计 あきる野市二宫建设业二つ星东京都有限公司株式会社サninushisuテームあきる野市二宫建设业 二つ星 东京都株式会社里加鲁建设 稲城市坂浜建设业 二つ星东京都有限公司会稲城防灾设备 稲城市东长沼建设业 二つ星东京都株式会社寿々木工务店 稲城市百村建设业 二つ星 东京都 斋须翔太/SKSERVICE 羽村市五ノ神 建设业 二つ星 东京都株式会社 ネオインテリジェンス 葛饰区お花茶屋 建设业 二つ星 东京都 株式会社rianズマップ葛饰区お花茶屋建设业 二つ星 东京都有限公司 福相兴芸社 葛饰区奥戸 建设业 二つ星 东京都下司奏/riハウsuサポート 葛饰区水元建设业 二つ星 东京都株式会社 三郷新星兴业 葛饰区西水元 建设业 二つ星东京都菊地隆雄葛饰区西水元建设业二つ星东京都双叶ライン株式会社葛饰区西水元建设业二つ星东京都有限公司片仓タイル工业葛饰区西水元建设业二つ星东京都株式会社HRC葛饰区东金町建设业二つ星东京都株式会社黒田电设葛饰区东金町建设业二つ星东京都株式会社暁建设 葛饰区立石建设业二つ星东京都株式会社サkurarufu江戸川区一之江建设业二つ星东京都有限公司萨摩江戸川区一之江建设业 二つ星东京都有限公司美创建江戸川区一之江建设业 二つ星东京都有限公司东京岩井兴业江戸川区春江町3丁目建设业 二つ星东京都株式会社SAKURAWORK'S 江戸川区江建设业 二つ星东京都 アイエ松suai工业江戸川区新堀建设业二つ星 东京都株式会社东京suパria商社 江戸川区瑞江建设业二つ星 东京都メインマーク株式会社 江戸川区西葛西建设业二つ星 东京都株式会社アザーsu 江戸川区西葛西建设业二つ星 东京都株式会社优健工业 江戸川区西葛西建设业二つ星 东京都西葛西建设业二つ星 东京都株式会社kurafuto・K 江戸川区西瑞江建设业二つ星 东京都相马工业株式会社江戸川区南筱崎町建设业二つ星东京都有限公司铃建江戸川区南小岩建设业二つ星东京都suエヒロ工业株式会社江戸川区平井建设业二つ星东京都 オハウジング株式会社 江戸川区北小岩建设业 二つ星 东京都 fuェritchi 株式会社 江东区永代 建设业 二つ星 东京都 株式会社工业开発测量社 江东区塩浜 建设业 二つ星 东京都株式会社 ZERO 江东区亀戸 建设业二つ星 东京都株式会社 八幡工业 江东区亀戸 建设业 二つ星 东京都千代田エナメル金属株式会社 江东区亀戸 建设业 二つ星 东京都 多田建设株式会社 江东区亀戸 建设业 二つ星东京都株式会社 东京宫本电気 江东区三好建设业 二つ星东京都合同会社エコ・ピーsu 江东区支川建设业 二つ星东京都株式会社サン・カミヤ 江东区新大桥建设业 二つ星东京都株式会社コーワシステム江东区潮见建设业二つ星东京都株式会社京叶管理工业 江东区潮见建设业二つ星东京都有限公司エアミッション 江东区潮见建设业二つ星东京都株式会社ヤマデン 江东区冬木 建设业 二つ星 东京都有限公司 TOKYOC 江东区东砂 建设业 二つ星 东京都 株式会社M&Fteecnicica 江东区南砂 建设业 二つ星 东京都 ou2 株式会社 江东区富冈 建设业 二つ星 东京都 株式会社 エコrifォーム 江东区富冈建设业 二つ星 东京都株式会社 博宣 江东区平野 建设业 二つ星 东京都 グリーン総合住宅株式会社 江东区北砂 建设业 二つ星 东京都 株式会社 OWficeMaay 港区 建设业 二つ星 东京都 かたばみ兴业株式会社 港区元赤坂建设业 二つ星 东京都株式会社 エコライfu 港区元麻布建设业 二つ星 东京都株式会社 インデックストラテジー 港区虎ノ门 建设业 二つ星 东京都MEDCommunications 株式会社 港区港南 建设业 二つ星 东京都 タイホーエンジniaaringu 港区高轮 建设业 二つ星 东京都 株式会社 LOTUS 港区高轮 建设业 二つ星 东京都 株式会社ティ・アイ・シー 港区三田建设业二つ星 东京都株式会社电巧社 港区芝建设业二つ星 东京都建物本铺株式会社 港区芝建设业二つ星
很高兴介绍2024年至2034年时期Kaputa区有史以来的第一个综合发展计划。本文档是主要利益相关者的更广泛咨询和参与的结果,因此是一份文档,打算满足卡普塔居民的愿望。我感谢我们的内部和外部利益相关者在这项综合发展计划的实际制定中为他们的坦率和宝贵的贡献。在这项综合发展计划中,卡普塔区在未来10年内阐明了其方向。已经制定了该计划,以应对服务提供的需求,并特别关注为我们的地区做准备未来。综合发展计划概述了我们希望实现的战略方向和各个目标。随着我们继续努力建立更好的Kaputa,这是我们巩固我们的优势并确定发展机会的吉祥时机,这将引导该地区并增强向我们的人民提供服务。通过这项综合发展计划,我们将尝试建立一个为最脆弱的社区成员提供增强支持的地区,并将优先考虑影响大多数卡普塔居民的问题。接下来的十年中的主要野心将是建立一个地区团队,在该团队中,员工在工作中享有快乐和成功,居民能够在该地区的不同地区获得急需的服务。我们希望该综合发展计划将成为整个Kaputa区的灵感来源。通过共同的努力,我们将能够为更美好的未来做出贡献。我借此机会向所有为该计划制定的各个阶段做出贡献的人提供了感谢。我呼吁整个卡普塔地区利益相关者的持续支持使该计划的实施成功。
引言:近年来随着高温环境下运动习惯的逐渐普及,许多运动爱好者开始参与其中,但其安全性和有效性的科学研究尚存在差距。目的:测量不同高温高湿环境下运动过程中脂肪和糖氧化的供能特征。方法:20名健康成年受试者分别在30~33 o C、20%相对湿度(RH)、50%RH下进行20 min的固定强度运动。结果:静默暴露条件下,与高温下RH 20%和RH 50%相比,糖氧化显著增加(P<0.01),脂肪氧化显著降低(P<0.01),总能量消耗显著增加(P<0.01)。 65% VO2 max运动条件下,与高温RH 20%和RH 50%相比,糖氧化量明显减少(P<0.05),总能量消耗明显减少(P<0.05)。结论:高温中湿控环境下65% VO2 max运动条件下,高温中湿(RH 50%)环境消耗的能量更多,糖氧化量更大。证据级别Ⅱ;治疗研究-调查治疗结果。
未来的气候表现出对森林生物量的冲突影响。我们评估了植物液压性状,CO 2级别的升高,变暖和降水的变化如何影响森林的生产力,蒸散剂以及液压衰竭的风险。我们使用了带有植物流体动力学(命运 - hydro)的动态植被模型来模拟对巴拉岛Barro Color-Ado Island的潮湿热带森林中未来气候变化的独立反应。我们通过选择对观察结果表现良好的植物性状组合来校准模型。这些组合以温度和预言的变化进行,用于两个温室气体排放方案(2086 - 2100:SSP2-45,SSP5-85)和两个CO 2级别(现代,预期)。预计在未来的气候情况下,液压衰竭的风险预计将从现代率增加到5.7%到10.1 - 11.3%,至关重要的是,提升的CO 2仅提供了轻微的改善。相比之下,升高的CO 2减轻GPP降低。我们将水力故障风险的更大量化归因于特征组合,而不是CO 2或气候。我们的结果项目森林的森林既增长速度(通过生产率提高)和更高的死亡率(通过增加的液压失败率)在某些特征植物组合所构成的新热带地区的森林(通过液压衰竭率提高)变得不可活跃。
本文介绍了针对海洋维修应用开发的基于丙烯酸的粘合剂的研究。单独使用粘合剂陈化了12个月以上,并定期测试拉伸样品,以表征40°C时海水老化的影响。单独的粘合剂可在海水中塑化,在12个月后损失了大约40%的模量和强度,但干燥后很大程度上恢复了这些模量和强度。并行,在相似的衰老时间后测试了粘合的玻璃和碳纤维复合组件。在40°C的天然海水中12个月后,两者都保留了超过80%的未染色明显剪切强度。在粘结之前浸入海水长达12个月的湿复合底物的粘合键合,以确定残留键强度。湿玻璃纤维复合材料组装的断裂强度不受底物浸入长达12个月的影响,而在粘合键后,碳纤维复合组件的强度在延长的底物浸入后的强度下降至约50%。讨论了这种差异的原因。结果表明,这种粘合剂显示出良好的耐用性,应考虑海洋维修应用。
摘要本文旨在研究几种新型保存方法对存储期间湿konjac面条质量的影响。湿的konjac面条由konjac粉,大豆蛋白分离株和地瓜淀粉制备。通过单个酸(pH = 3)浸泡(CA组),酸浸泡和真空包装(CF组)以及碱性浸入,然后是巴氏灭菌和真空包装(CI组)。结果,CF和CI组可以很好地抑制在室温下(28±1°C)储存过程中微生物的生长8周。与对照组(CK)组相比,经过处理的湿konjac面条也具有稳定的感官质量,更好的气味和味道,并且具有更高的咀嚼性和弹性。与CI治疗相比,CF治疗在白色,感觉特征,纹理特性和产品的内部微观结构方面表现出更理想的性能。总而言之,使用酸浸泡和真空包装技术是确保湿konjac面条的预期货架的一种有效方法。这项技术还可以为企业提供一些理论和技术支持,以处理和生产湿的konjac面条和其他高水分食品。
摘要:在粒子理论计算、数值模型和积云参数化中,通常假设湿静能 (MSE) 绝热守恒。然而,由于假设了流体静力平衡,MSE 的绝热守恒只是近似的。这里评估了两个替代变量:MSE 2 IB 和 MSE 1 KE,其中 IB 是浮力 (B) 的路径积分,KE 是动能。这两个变量都放宽了流体静力假设,并且比 MSE 更精确地守恒。本文量化了在无序和有序深对流的大涡模拟 (LES) 中假设上述变量守恒而导致的误差。结果表明,MSE 2 IB 和 MSE 1 KE 都比单独的 MSE 更好地预测沿轨迹的量。 MSE 2 IB 在孤立深对流中守恒较好,而 MSE 2 IB 和 MSE 1 KE 在飑线模拟中表现相当。这些结果可以通过飑线和孤立对流的压力扰动行为之间的差异来解释。当假设 MSE 2 IB 绝热守恒时,上升气流 B 诊断中的误差普遍最小化,但只有当考虑热容量的湿度依赖性和潜热的温度依赖性时才会如此。当使用不太准确的潜热和热容量公式时,由于补偿误差,MSE 2 IB 产生的 B 预测比 MSE 更差。我们的结果表明,各种应用都将受益于使用 MSE 2 IB 或 MSE 1 KE 代替具有适当公式化的热容量和潜热的 MSE。
申请人代表 Bernard Ralph 先生列出了申请,并指出他的客户之前没有在同一地点举办过类似的活动。与之前举办的活动相比,此次活动的容量会更低,因此,他们认为,此次活动的举办方式会更负责任、更可控,以防止出现反对者所担心的情况。Ralph 先生强调,只有一位居民提出了反对意见,主管部门没有收到任何陈述。活动运营者必须非常认真地对待与许可证相关的商定措施和管理计划,因为不这样做将构成刑事犯罪,并损害其客户举办成功活动的声誉。申请人同意并提交了噪音管理计划、安全管理计划、活动管理计划和详细的风险评估,根据拟议的条件,这些计划必须在整个活动过程中继续使用。
2024 年 8 月 22 日 — 可预订的 Plenie Shelter。Farmittaa Trahead 的马匹。岸边钓鱼。马拖车停车场。游泳区。停车场。通往县城的船坡。