alpes,ltm,Grenoble F-38054,法国 * erwine.pargon@cea.fr,Univ。Grenoble Alpes,CNRS,LTM,17 Rue des Mardyrs,38054 Cedex 09法国Grenoble,法国摘要摘要本研究提出了通过在上衣的室内饮用量的策略,该策略通过与上衣相结合的室友eTch fat Chip Chore to Chore Choh toper fore the toper the toper fore the notch facking Koh weats face face face the the gan支柱。的确,KOH溶液中的gan蚀刻是一个各向异性过程,这意味着它允许在宏观尺度上出现稳定的面,而原子过程(例如踩踏)驱动湿蚀刻的基本机制在微观尺度上驱动湿蚀刻的基本机制。我们的研究强调了形状(圆形或六角形,与M平板或A平板对齐)的关键作用,以及硬面膜在确定所得的结晶刻面形成及其相关的粗糙度方面的粗糙度。此外,它强调了等离子体图案后的GAN支柱剖面(重入,直,锥形)的重要性,因为它们会强烈影响随后的湿蚀刻机制。最终,该文章证明,可以通过在等离子蚀刻后在略微倾斜的GAN曲线上使用室温湿KOH(44 wt%)来实现平滑的M型面,并结合使用六边形M的Masks。
具身人工智能 (EAI) 是当代人工智能的一个方向,其特点是发展对自然认知过程的综合研究,其假设是认知者的身体在认知中起着决定性的作用。在 EAI 中,“身体”的概念呈现出广泛的解释,从概念上讲,可以认为跨越了两个极端:一种是用于符号信息处理的神经元外物质支持的概念,适合将符号置于感觉运动关联中;一种是多重、集成、嵌入环境的系统的概念,其自组织的生物动力学与意义建构过程密不可分(纠缠在一起)(例如,Gallagher,2011;Ziemke,2016)。EAI 通常被宽泛地等同于机器人 AI,即一种以构建和实验探索自然认知过程的硬件模型为目标的 AI 形式。事实上,与计算机不同,机电机器人被赋予了身体,使其处于物理世界中 — 即,不(仅仅)处于抽象的“信息世界”中 — 并允许它们基于传感器(例如,能够检测障碍物、光、声音、电磁信号等的传感器)与其进行交互。和执行器。在大多数情况下,EAI 创建由计算机控制的机器人,这样机器人代理的身体在其与环境的感觉运动交互中,将中央处理单元的活动作为基础,中央处理单元充当信息处理和决策设备。然而,EAI 社区也致力于构建不受计算机引导的机器人,这些机器人能够仅通过身体来了解周围环境并完成认知任务(例如 Brooks,1991;Steels 和 Brooks,1995)。自 20 世纪 90 年代初出现以来,EAI 通过其多种表现形式,在基础研究和应用研究层面都取得了令人瞩目的进步(例如 Pfeifer 和 Bongard,2006)。尽管如此,从 20 世纪 90 年代末开始,人们就开始争论 EAI 方法是否适合生物体建模。这些批评越来越多地不局限于强调 EAI 典型的理论和实现的身体机械观。他们注意到 EAI 无法对身体组织进行建模,即通过新陈代谢支持生物体不断自我生产的功能关系动态网络(Ziemke,2016;Damiano 和 Stano 2018)。这些都是激进的批评,指出目前 EAI 对自然认知过程的综合研究仅仅建立在对生物体的模仿建模上:一种人工重建,只考虑身体结构的表面方面(例如,运动和解剖元素)而忽略了其最具体的维度——自主组织。在这篇短文中,我们打算介绍一种旨在克服这一差距的 EAI 研究方法的一般纲领路线。这样的程序本身并不是什么新鲜事。EAI 研究
喷射混凝土必须适合现场运输(泵送)和应用(喷涂)过程。因此,必须获得合适的稠度和流变性以便浇注。本文评估了各种粘度调节剂 (VMA) 对湿混喷射混凝土流变性和触变性的影响。使用了六种 VMA,根据其成分分为三组:基于二氧化硅、层状硅酸盐的添加剂和聚合物添加剂。在砂浆中深入研究了这些流变改性剂,获得了材料的屈服应力 (τ o ) 和塑性粘度 (μ) 的值,以及触变性(滞后面积),它代表了流体结构恢复所需的能量。为了获得这些参数,使用实验室流变仪在动态状态下测试流体,并施加剪切速率斜坡。此外,通过在流动台试验中获得流动台直径来确定砂浆的稠度。该评估是在含有不同含量的高效减水剂 (SP) 的砂浆中进行的。所有这些信息使得评估 SP 与每种 VMA 结合的影响成为可能,获得一个可工作性箱,确定滞后区域并验证哪些组合获得了优于对照混合物(不含 VMA)的流变行为。所述结果与现场进行的喷射混凝土混合物中获得的回弹指数相关。砂浆的触变性和现场的回弹率值导致了最准确的相关性,从而可以选择最有效的 VMA 用于喷射混凝土。最后,两种综合结果(实验室和现场)允许一种有助于设计和优化湿混喷射混凝土的分析过程。
背景:ICU 中所有使用机械通气的患者都必须对吸气气体进行加湿,可以使用加热加湿器 (HH) 或热湿交换器 (HME)。最近的研究表明,对于 COVID-19 患者,加湿设备的选择可能会对患者的管理产生相关影响。我们报告了 2 个使用 HME 或 HH 的 ICU 的数据。方法:审查了魁北克市 2 个 ICU 中第一波疫情期间需要有创机械通气的 COVID-19 患者的数据。其中一个 ICU 使用了 HME,而另一个 ICU 使用了加热丝 HH。我们比较了呼吸机设置和调整呼吸机设置后第一天的动脉血气。报告了气管插管阻塞 (ETO) 或亚阻塞事件以及限制加湿不足风险的策略。在台架试验中,我们用湿度计测量了不同环境温度下 HH 的湿度,并评估了其与加热板温度的关系。结果:我们报告了 20 名 SARS-Cov-2 阳性受试者的数据,其中 6 名在使用 HME 的 ICU 中,14 名在使用 HH 的 ICU 中。在 HME 组中,尽管每分钟通气量较高(171 vs 145 mL/kg/min 预测体重 [PBW]),但 P aCO 2 较高(48 vs 42 mm Hg)。我们还报告了在使用 HH 的 ICU 中发生了 3 次 ETO。湿度台架研究报告了 HH 的加热板温度与输送湿度之间存在很强的相关性。在采取措施避免湿度不足后,包括监测加热板温度,不再发生 ETO。结论:COVID-19 患者使用的加湿装置的选择对通气效率(增加 CO 2 去除率,减少死腔)和与低湿度相关的并发症(包括在高环境温度下使用加热丝 HH 时可能出现的 ETO)有相关影响。关键词:加热加湿;热湿交换器;死腔;CO 2;COVID-19;气管插管阻塞。[Respir Care 2022;67(2):157–166。© 2022 Daedalus Enterprises]
目标。木星的大气的特征是带状喷气机,包括赤道超旋转射流,具有强烈的潮湿的影响活动,以及涡流,波浪和湍流所施加的扰动。即使在对木星的太空探索任务和木星的详细数值建模之后,关于带喷头的机制以及干燥和湿对流在维护这些喷气机中所起的作用仍然存在问题。方法。我们使用称为Jupiter-Dynamico的全球气候模型(GCM)报告了木星天气层的三维模拟,该模型将其在二十面体网格上与详细的辐射传输计算结合在二十面体网格上。我们添加了一个用于木星的热羽流模型,该模型通过干燥和潮湿的对流羽流,模仿热,动量和示踪剂的效果,这些羽流在GCM网状间距中未解决,并使用基于物理学的方法尚未解决。结果。我们的木星 - dynamico全球气候模拟表明,大规模的Jovian流,尤其是喷气结构,可能对对流层中的水丰度高度敏感,并且存在赤道超级旋转的丰度阈值。与我们的干燥(或弱潮湿)模拟相比,包括观察到的对流层水量的模拟在赤道处显示出明显的超级旋转向东,而十二个向东的中纬度喷气机则不会迁移极点。幅度与观测值一致。如闪电观测所表明的那样,通过我们的热羽模型模拟的对流活性比中部至高纬度地区弱。无论它们是干燥还是潮湿,我们的模拟都会在Zonosrothic Congime中观察到的从小(涡流)到大尺度(JET)的逆向能量级联反应。
Bolney教区议会对Lightrock Power Bess DM/23/1184的回应草案:在Coombe Farm的土地上,Twineham Bolney Parish Council鲍勃·莱恩(Bob Lane),强烈反对以下理由反对该计划申请:景观和视觉影响申请人在申请人中选择的地点是在景观中占据东部/西部地区的山脊。该提案是针对52个白电池容器的高度为270万,高度为290万,高度为3m的声木栅栏和一个高度为6m的变电站。所有这些电气设备都将主导山脊线,并将对景观产生有害影响,而景观不会因拟议的景观而在现场周围的景观降低。申请人未能正确评估开发对住宅物业的影响和靠近现场的公共权利。图1.4在申请人的LVIA中显示,该网站一公里内用户的所有物业和公共权利将在该开发中具有61%至100%的理论可见性。第8.1.5段的申请人景观和视觉影响评估承认,公共权利的使用权34BO的使用者将在Bolney教区中失去整个现场的现有视图,从而对南方唐斯(South Downs)失去。申请人的设计和访问声明的第6.2段承认,该开发项目“会导致一些不利的景观和视觉影响对许多受体产生”。政策DP40 MSDC地区计划的可再生能源计划要求任何可再生能源计划必须特别考虑开发的景观和视觉影响,对生态的影响以及对住宅便利性的影响,包括视觉入侵。此应用程序失败了策略DP40。站点选择该应用网站在开放式乡村,因此开发与DP12保护和增强当前MSDC地区计划的乡村相反。如果该项目位于布朗菲尔德而不是农业土地上,这将更合适。申请人完全未能证明该项目不能合理地安置在当地景观中较不突出的山脊上,远离公共权利,列出的建筑物和住宅特性与政策DP12的保护和乡村的保护和增强,DP22公共权利,dp29噪声和dp3噪声和dp3噪声和dp3噪声构建。正如Rampion最近通过在毗邻的Cowfold教区中选择了其新变电站的地点,因此这些电气安装不必位于国家网格变电站附近,但可以位于几公里之外。教区
拥有液态水地下海洋的冰卫星是太阳系中最有前途的天体生物学目标之一。在这项工作中,我们评估了在前体生命探测任务中部署激光帆技术的可行性。我们研究了前往土卫二和木卫二的此类激光帆任务,因为这两颗卫星发射出的羽流似乎可以进行现场采样。我们的研究表明,千兆瓦激光技术可以将 100 公斤的探测器加速到 ∼30 公里/秒的速度,然后在 1 - 4 年的时间内到达木卫二,在 3 - 6 年的飞行时间内到达土卫二。虽然激光阵列的理想纬度各不相同,但将必要的基础设施放置在靠近南极圈或北极圈的地方可能是土卫二任务在技术上可行的选择。至关重要的是,我们确定与这些卫星的最小相遇速度(约 6 km s −1 )可能接近最佳速度,可通过类似于欧罗巴快船任务上的表面灰尘分析仪的质谱仪来检测羽流中的生物分子构件(例如氨基酸)。总之,太阳系中的冰卫星可能非常适合通过激光帆结构方法进行探索,尤其是在需要低相遇速度和/或多次任务的情况下。
物理材料科学的优先领域之一是开发基于耐热聚合物的新型聚合物复合材料。聚酰亚胺在耐热聚合物领域占据领先地位。目前,使用各种基于聚酰亚胺的材料。聚酰亚胺泡沫 ( PIF ) 广泛用于微电子领域,以生产介电常数非常低的电介质、传感器保护涂层、用于补偿振动载荷的应力缓冲器以及许多集成电路元件;由于其高热稳定性和耐热性以及防火性,它们还在航空航天中用作隔热、吸音和减震材料 [ 1 ] 。存在几种获取 PIF 的基本技术。最常见的过程是基于四羧酸酯与二胺的化学反应,其结果是形成相关的预聚物 [ 2 ] 。上述 PIF 生产方法的替代方法可能是在热处理聚酰胺酸 (PAA) 的水溶性铵盐的冻干物的过程中形成多孔聚酰亚胺结构的技术 [ 3 ] 。其独特之处在于无需使用表面活性剂或其他添加剂即可获得所需形状的各向同性泡沫材料,因为多孔结构是由于溶液冻结并随后水升华而形成的。然而,在这种情况下,泡沫材料性能的调节仅限于选择 PAA 盐溶液的浓度及其冻结条件。此外,控制性能的可能方法之一是引入各种填料 [ 4 ] 。在改善聚酰亚胺的热性能和机械性能方面特别令人感兴趣的是层状铝硅酸盐纳米颗粒 [ 5 ] 。在广泛使用的铝硅酸盐纳米颗粒中,有蒙脱石,其特点是可用性和高度各向异性。因此,本研究的目的是
摘要:这项研究的目的是评估利用BW(Buttress Wall)来控制越南胶质土壤条件下膜片壁的偏转的影响。使用在特定项目期间密切监视的数据评估了碰撞层的物理和机械性能,这是利用硬化土壤模型的3D数值模拟的验证。分析结果与现场监视数据非常匹配,该数据测试了模拟模型的准确性。这构成了进一步研究BW壁的维度参数的基础,包括它们之间的长度,厚度和间距。从参数研究中获得的结果表明,在BW壁之间改变壁的长度和间距显着限制了隔膜壁的变化,而厚度的变化具有可忽略的效果。通过3D数值模拟,已经建立了最大壁偏转与参数(例如壁长和BW壁之间的间距)之间的线性关系。