一个黑盒子,管道和一个塑料容器似乎不可能在与气候变化的战斗中,但它们在泥炭地中似乎很重要。科学家阿拉斯泰尔·贝利斯(Alastair Baylis)和本·泰勒(Ben Taylor)上周邀请福克兰兹(Falklands)到萨里厨房(Saeri)厨房和花园,以查看助理室,并聊了聊相关项目。该项目由Defra(英国)和Falklands政府资助,并由Falklands Confartion与Saeri,英国生态与水文学中心以及英国的Antarctic调查一起领导。但是为什么首先需要这种设备的原因。有人解释说,泥炭土是重要且有价值的生态系统,其中包括其他好处,有可能通过隔离和存储大量碳来消除肝脏气候变化服务。但是,由于这种通常大的碳储存,它在降级时已经累积了,它们有可能为大气中的温室气体贡献大量的温室气体,因此增加了气候变化。该项目将考虑来自不同泥炭地栖息地的温室气体(GHG)排放。泰勒博士对企鹅新闻说:“数据将增加我们的规定,并为国家水平的碳排放量做出贡献。”数据还可以作为建立“福克兰群岛碳代码”的竞争,可以看到,这可以付出减少土地上温室气体排放的土地所有者的付款,例如通过栖息地修复。”就设备而言,该项目将同时使用通量塔
*申请人只能通过UM的在线申请系统申请PHD联合计划。申请人应在其申请中选择其指定的联合计划和一对主管。
抽象问题陈述:自然界中的自组织颗粒长期以来启发了结构形式。这些形式以有效地使用最小材料,并轻巧。物理模型已用于探索这些自组织粒子,并作为设计和计算的基础。然而,制作,测量和缩放这些模型是乏味的,尤其是对于复杂的几何形状,例如树状结构。如今,计算机模拟可以应用自然逻辑来创建数字模型。这些模型模拟形式调查和缩放速度更快,更容易。研究目标:这项研究的目的是提出一种数字工具,该工具源自算法设计,用于基于湿线模型的物理测试的分支结构的数字形式查找。研究方法:这项研究首先是通过研究该领域的可用资源和科学文章的研究,然后使用计算方法来设计数字工具。结论:基于湿线模型的算法设计简化了树状结构的最佳设计。它优化了设计结果和设计过程。物理形式调查通常会在将模型转换为建筑计划时面临困难。通过数字化此过程,最终形式的测量变得更快,更容易。这增强了这些形式的构造性。关键字:自组织模式,数字形式找到,算法设计,类似树状的结构。