在 PC 行业中,网络制造生态系统(本文中也称为“网络系统”)旨在通过让对 EWOD 设计、制造和操作知之甚少的人们利用数字微流体作为便捷的液体处理平台来推动数字微流体领域的发展。...................... 52
•FTE vs HeadScount•FTE(全职等效)和员工人数是两种计算占据PI实验室的实验室成员数量的方法。•员工人数是实验室中的实际尸体数量。使用“人数”一词时,每个人都将任命是全职还是兼职。•FTE是一名员工全职工作的时间。许多组织使用该概念将几个兼职员工工作的时间转换为全职员工工作的时间。
在飞利浦,我们在产品创建的各个方面都可以推动可持续性。此包装可回收,没有任何塑料零件。我们的野心是减少浪费并最大程度地减少我们投放市场的USB适配器数量。如果您需要一个适配器,请通过消费者护理中心与我们联系:www.philips.com/support
Egill Juliusson,以前是Landsvirkjun 1简介核和地热工业开始发布截至1950年代的饱和蒸汽流量研发。碳氢化合物生产行业在1990年代开始对湿天然气计量研发变得更加感兴趣。具有饱和蒸汽和湿天然气流是两相流量计量挑战,初始湿天然气流量计量研究包含现有的饱和蒸汽计量方法。但是,碳氢化合物行业的研发的随后方向与蒸汽行业的研发有所不同。碳氢化合物行业的两相测定开发并没有倾向于渗透回,或者至少没有被蒸汽行业采用。通常缺乏独立行业之间的沟通和思想转移。碳氢化合物生产行业已经开发了流量计量技术,如果只有知识转移,可能会使包括可再生能源领域在内的其他行业受益。
本文档中包含的陈述以及未来可能发生的有关事项,事件,统计或临床或财务结果的任何随附的陈述是1995年《私人证券诉讼改革法》的含义中的“前瞻性陈述”。此类陈述包括但不限于与IXO-VEC市场规模相关的期望的陈述; Adverum产品候选人的治疗和商业潜力; IXO-VEC作为一次性IVT注入湿AMD的潜在优势,包括潜在的一流产品概况,临床活动和IXO-VEC的有利安全性;与Adverum的候选产品,临床研究和试验有关的计划和里程碑(包括第2阶段Luna试验中的临时数据的预期时间,第3期关键试验设计和第3阶段试验的启动)以及监管文件;以及包含“预期”,“五月”,“潜在”,“意志”和类似表达式的其他陈述,所有这些陈述均基于Adverum对当前条件的某些假设,预期的未来发展和其他因素在这种情况下是适当的。Adverum可能不会及时或根本不及时完成这些计划,或这些产品,临床开发,过程开发,制造或监管目标,或者以其他方式执行意图或满足其前瞻性陈述中所披露的期望或预测,并且您不应对这些前瞻性陈述表示不同意的依赖。本文档中包含的所有前瞻性陈述仅在制作之日起说明。实际结果和事件的时间与在这种前瞻性陈述中的预期可能有所不同,这是由于各种风险和不确定性所致,包括不受限制的风险,即eDverum的资源不足以进行eDverum进行行动或继续计划的开发计划并继续计划的开发计划和计划的临床试验,而临床可能会导致临床数据的风险更改,因为该临床可能会导致临床临床的临床数据,并且会导致临床中的临床数据,并且会导致临床中的临床数据,并且会导致临床中的临床临床临床数据,并且会导致临床中的临床数据,并且会导致临床中的临床数据临床。在产品开发和监管机构批准过程中固有的这种临床研究,风险和不确定性的产品中,患者参与了副弗鲁姆的临床研究或制造产品的制造,即饰面的风险将无法成功地开发,制造或商业化其任何产品候选者以及受到受到批评的延迟的风险,并将其商业化。列出了其他风险和不确定性。 10-K,以及随后向SEC的文件中反映出的任何修正案。 Adverum没有义务更新此类陈述,以反映除法律要求外,除了法律规定之日之日之日之日起发生的事件或存在之后存在的情况。列出了其他风险和不确定性。 10-K,以及随后向SEC的文件中反映出的任何修正案。 Adverum没有义务更新此类陈述,以反映除法律要求外,除了法律规定之日之日之日之日起发生的事件或存在之后存在的情况。列出了其他风险和不确定性。 10-K,以及随后向SEC的文件中反映出的任何修正案。 Adverum没有义务更新此类陈述,以反映除法律要求外,除了法律规定之日之日之日之日起发生的事件或存在之后存在的情况。列出了其他风险和不确定性。 10-K,以及随后向SEC的文件中反映出的任何修正案。Adverum没有义务更新此类陈述,以反映除法律要求外,除了法律规定之日之日之日之日起发生的事件或存在之后存在的情况。
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
路面分为刚性路面和柔性路面两种。柔性路面由四个部分组成,即路基、底基层、基层和面层。柔性路面基层的道路建设中使用水结碎石和湿拌碎石。与传统的水结碎石相比,用 WMM 建造的柔性路面施工速度更快,更耐用。本研究的目的是比较 WMM 中使用的各种细材料的工程参数。用于比较的材料是土、石粉、沙子、粘土和粉煤灰。这样做是为了找出哪种细材料最适合 WMM 建设。对各种 WMM 混合物进行了重型压实试验、CBR 试验和渗透性试验。重型压实试验表明,与其他 WMM 组合相比,含石粉的 WMM 具有最高的最大干密度,而含粉煤灰的 WMM 具有最高的最佳含水量。 CBR试验表明,在研究中使用的所有细粒材料中,添加石粉的WMM具有最高的CBR值。渗透性试验表明,添加沙子的WMM具有最大的渗透系数值,而添加粘土的WMM具有最小的渗透系数值。
2019 年 2 月,澳航收购了 Alliance Airlines 19.9% 的股份,ACCC 对此提出了初步的竞争担忧。ACCC 的初步看法是,拟议的收购可能会大大削弱往返昆士兰州和/或西澳大利亚州地区和偏远资源地点的企业客户航空运输服务供应以及布里斯班 - 莫兰巴航线常规公共交通服务的竞争,因为 Alliance 不再是澳航的竞争对手。此外,ACCC 还担心,拟议的收购可能会大大削弱各地区或航线常规公共交通服务供应的竞争,因为 Alliance 不再是飞机湿租服务的供应商。
使用电信号 1 来操纵基板上的液滴的能力(称为数字微流体)用于光学 2,3 、生物医学 4,5 、热 6 和电子 7 应用,并已导致商业上可用的液体透镜 8 和诊断套件 9,10 。这种电驱动主要通过电润湿实现,液滴在施加电压的作用下被吸引到导电基板上并在导电基板上扩散。为确保强大而实用的驱动,基板上覆盖有介电层和疏水性面漆,用于介电上电润湿 (EWOD) 11-13 ;这会增加驱动电压(至约 100 伏),并可能因介电击穿 14 、带电 15 和生物污垢 16 而损害可靠性。在这里,我们展示了液滴操控,它使用电信号诱导液体脱湿而不是润湿亲水性导电基底,而无需添加层。在这种与电润湿现象相反的电润湿机制中,液体-基底相互作用不是由电场直接控制的,而是由场诱导的离子表面活性剂与基底的附着和分离控制的。我们表明,这种驱动机制可以在空气中使用掺杂硅晶片上的水执行数字微流体的所有基本流体操作,仅需±2.5伏的驱动电压、几微安的电流和离子表面活性剂临界胶束浓度的约0.015倍。该系统还可以处理常见的缓冲液和有机溶剂,有望成为一种简单可靠的微流体平台,适用于广泛的应用。由于疏水表面是液体吸引机制良好运作的必要条件,我们认识到亲水表面对于液体排斥机制来说是首选。由于大多数材料都是亲水性的,如果发现脱湿驱动有效,则可以像 EWOD 一样实现数字微流体,但不需要疏水涂层。虽然大多数电诱导脱湿现象对常见微流体无效,因为它们基于不可逆过程 17,18 或特殊条件 19 ,但涉及表面活性剂的研究表明可逆性是可能的。例如,已经使用氧化还原活性表面活性剂 20 证明了衍生化金电极上水膜的电引发脱湿。此外,有机液滴已在水性电解质 23 中的共轭聚合物电极上移动。最近,通过使用离子表面活性剂,润滑摩擦系数已在固体-液体-固体配置中切换 21 ,沸腾气泡成核已在液体-蒸汽-固体系统中得到调节 22 。然而,这些方法并没有导致微流体平台技术,这需要可逆、可重复、强大且易于应用于液体-流体-固体系统的电驱动 24 。事实上,我们无法在裸露的金属电极 21,22 或介电涂层电极上用含有离子表面活性剂的水滴获得有效驱动。相反,我们发现裸露的硅晶片可以有效地工作,因为它的天然氧化物具有足够的亲水性,可以轻松脱湿,但又足够薄
线是由贻贝足分泌的液态贻贝足蛋白 (Mfps) 产生的。这些 Mfps 由腺体通过注塑反应组装和制造。[3] 贻贝的足压在表面形成真空室,从而推动流体 Mfps 的输送。据信,局限于斑块中的 Mfps,例如 Mfp-2、Mfp-3、Mfp-4 和 Mfp-5,在暴露于盐水时会形成凝聚层。所有 Mfps 都含有翻译后氨基酸 DOPA,而 mfp-5 含有最大浓度的 DOPA 残基(30 mol%)并导致强粘附。 [4] 据报道,MFP 的凝聚以多种方式发生,例如由静电相互作用驱动的复杂凝聚,如 MFP-131 和 MFP-151 的聚离子中所揭示的那样,[5] 以及由静电和/或疏水力驱动的自凝聚,如 MFP-3S 中所揭示的那样。[6]