抽象问题陈述:自然界中的自组织颗粒长期以来启发了结构形式。这些形式以有效地使用最小材料,并轻巧。物理模型已用于探索这些自组织粒子,并作为设计和计算的基础。然而,制作,测量和缩放这些模型是乏味的,尤其是对于复杂的几何形状,例如树状结构。如今,计算机模拟可以应用自然逻辑来创建数字模型。这些模型模拟形式调查和缩放速度更快,更容易。研究目标:这项研究的目的是提出一种数字工具,该工具源自算法设计,用于基于湿线模型的物理测试的分支结构的数字形式查找。研究方法:这项研究首先是通过研究该领域的可用资源和科学文章的研究,然后使用计算方法来设计数字工具。结论:基于湿线模型的算法设计简化了树状结构的最佳设计。它优化了设计结果和设计过程。物理形式调查通常会在将模型转换为建筑计划时面临困难。通过数字化此过程,最终形式的测量变得更快,更容易。这增强了这些形式的构造性。关键字:自组织模式,数字形式找到,算法设计,类似树状的结构。
代表着一种更可靠、更安全、生命周期更长的替代方案。通过湿纺技术成功获得了许多由石墨烯、碳纳米管、导电聚合物以及最近的 MXenes 制成的纤维,并研究将其作为可穿戴超级电容器的一维电极。[17–29] 然而,这些材料通常涉及复杂的合成程序、有害的分散剂溶剂或后处理步骤,以生产出具有足够机械阻力和电化学性能的纤维。芳族聚酰胺纳米纤维 (ANF) 最近被提议作为一种新的纳米级构建块来设计新的复合材料。[30] 与基于单体聚合的标准路线相反,ANF 可以通过自上而下的方法轻松快速地获得,通过溶解芳族聚酰胺聚合物链,然后通过溶液加工重新组装成宏观纤维或薄膜。[30,31] 芳族聚酰胺聚合物以其机械强度而闻名,但它不导电,必须负载导电填料才能实现电子传输。到目前为止,ANF 主要被研究用作聚合物增强体的填料[32,33]、多功能膜的基质[34–37]、隔热罩[38,39],甚至用作隔膜的添加剂和锂离子电池的固态电解质。[40,41] 然而,尽管 KNF 分散体具有良好的湿纺性,但人们对使用 ANF 来制造 FSC 却关注甚少。在之前的工作中,Cao 等人通过共湿纺核碳纳米管分散体和鞘 ANF 分散体制备了具有核壳结构的纤维。[42] 通过用 H3PO4/PVA 凝胶电解质渗透获得的对称 FSC 显示出高达 0.75 mF cm −1 的显著线性容量。Wang 等人将石墨烯纳米片 (GNPs) 加载到 ANF 分散体中,通过在水/乙酸溶液中凝固获得 ANFs/GNPs 复合线状电极。[43] 然而,他们的结果表明,GNPs 通过恢复对苯二甲酰胺单元之间的氢键干扰了 ANFs 的凝固,导致在 ANFs 基质中 GNPs 高含量时拉伸强度持续下降。在这项工作中,PEDOT:PSS@KNFs 复合纤维通过一个简单的两步工艺生产出来,包括将 Kevlar 纳米纤维化为 Kevlar 纳米纤维 (KNF)、KNF 纤维的湿纺以及随后浸泡在 PEDOT:PSS 水分散体中。以这种方式,由于导电的 PEDOT:PSS 链渗透而几乎保持 KNF 基质的机械阻力不变,因此获得了导电纤维。 PEDOT:PSS@KNF 纤维具有柔韧性、可编织、可缝纫等特点,通过耦合相邻的两根纤维,可以形成对称的 FSC。
©2022此手稿版本可在CC-BY-NC-ND 4.0许可下提供https:// creativecommons.org/licenses/by-nc-nc-nd/4.0/
注释 a) 所示数据为典型值,不应作为产品规格使用。 b) 有效的产品比较只能通过在同一测试设施、类似条件下的并行测试获得。 c) 可能有当前和/或比较数据。详情请联系 Contec 销售代表。 测试方法 1. CTM = Contec 测试方法 2. IEST-RP-CC004.3 = 评估洁净室和其他受控环境中使用的擦拭材料,环境科学与技术研究所,伊利诺伊州罗林梅多斯。
呈现:A:A-4021 Linz,BannerStraße1,电话。0732/3888-0,传真0732/3888-21399,电子邮件:office@bannerbatterien.com ch:Banner Batterien Schweiz AG,CH-5746 Walterswil,BannerStraße1,Tel。0840 Banner(226637),0800 Banner(226637),电子邮件:office.bchw@bannerbatterien.com,销售电子邮件: 73-23000,传真: +49/(0)6441/30 73-23099,电子邮件:office.bda@bannerbatterien.com
Uplift360 在 DASA 的资助下开发了一种环保方法来回收用于防弹衣的对位芳纶纤维。他们的创新技术将废纤维转化为液体,然后可以重新纺成高质量的材料,从而减少二氧化碳排放并加强供应链。这种方法可以保持纤维的强度,使其可以在国防材料和其他领域重复使用。湿纺工艺使纤维可以重新用于各种产品,如服装、绳索和机身,从而增强可持续性和供应链弹性。
社交 - 上述对健康的负面影响,以及燃料成本高效率无效的房屋的财务影响,平均少钱用于购买食物,在运输上花费,保持租金并保持社交联系。生活在寒冷的房屋中会影响缺乏工作和教育的疾病。如果只能保持一个或两个房间的温暖,这会影响隐私以及有工作和学习的空间。压力较高的人满为患的冷湿屋与更高水平的家庭暴力和无家可归程度有关。
4.7碳固隔......................................................................................书签未定义。4.8 Water quality ......................................................................................................... 36 5.0 Long-term Data ........................................................................................................ 36 6.0 Synthesis Workshop .................................................................................................. 37 7.0 Conclusions .............................................................................................................................................................................................. 37
摘要:海藻酸盐是一种具有良好生物相容性的天然高分子,是可持续发展和替代石油衍生物的潜在高分子材料。但纯海藻酸盐溶液不具有可纺性,阻碍了海藻酸盐应用领域的拓展。随着静电纺丝技术的不断发展,人们开始采用合成高分子如PEO、PVA等作为共纺剂,增加海藻酸盐的可纺性。而且,利用多流体静电纺丝制备的同轴、平行Janus、三元等多样、新颖的静电纺丝纤维结构,为天然高分子可纺性差的问题找到了新的突破口。同时,多样的静电纺丝纤维结构有效地实现了药物的多种释放方式。海藻酸盐与静电纺丝的强强联合,被广泛应用于组织工程、再生工程、生物支架、药物输送等多个生物医学领域,研究热度持续高涨,尤其在药物的控制输送方面。本综述对海藻酸盐进行了简要概述,介绍了静电纺丝的新进展,并重点介绍了海藻酸盐基电纺纳米纤维在实现脉冲释放、持续释放、双相释放、响应性释放和靶向释放等各种控制释放模式的研究进展。