正确充电锂细胞(锂离子)是一个非常重要的功能,不能轻易掌握,大多数锂细胞都需要精确控制的过程,必须密切关注细胞制造商的建议。最重要的项目是电荷电压和电流。li-ion细胞需要充电器的恒定电流恒定电压(CC/CV)类型。电荷电流以0.5c至1c的速率流入电池,直到电池电压达到4.20伏。此时,充电器切换到恒定电压模式,有时称为CC至CV点。在这一点上,充电器必须非常准确地保持电压,而电荷电流降至C/10或C/20。电流降至该水平,充电器应断开连接并防止进一步的电流流入单元格。
港口运营对全球贸易至关重要,是能源密集型的,严重依赖化石燃料。向可再生能源过渡可以减少其碳足迹并增强弹性和可持续性。可再生能源社区 (REC) 为将可再生能源整合到港口设施中提供了一个协作和分散的框架。然而,港口当局和海事利益相关者在设计、实施和运营方面面临挑战,特别是在估计结果和收益方面。了解 REC 框架对于港口行业解决当前的优先事项至关重要。本研究为利益相关者提供了在港口实施一个或多个能源社区的指导方针。基于欧盟法规和国家法律的能源和经济模型评估了港口 REC 的可行性。该模型考虑了港口能源使用和各种生产系统,例如太阳能和海洋可再生能源技术,以及混合配置中的能源存储,以估计可变需求概况并探索可再生能源融入港口能源系统。数值模型模拟了多个能源用户之间的虚拟能源交换,并调查了港口共享能源项目的可行性。该研究全面分析了技术和经济情景,并研究了多个虚拟能源终端用户聚合的便利性。结果表明,增加可再生能源互补性和合理的系统设计可以覆盖高达 60% 的港口总能源需求,并实现 90% 的可再生能源自用。激励措施确保大型混合能源系统的回收期在 6 年以下,小型发电厂的回收期在 2 至 4 年之间,这突显了自愿成员的重大经济利益。电池可使可再生能源在港口能源系统中的渗透率提高到 15%,经济影响适中。虚拟自用计划前景光明,因为经济激励措施将重点转移到提高当地可再生能源利用率的设计方面。鼓励在港口建立多个能源社区的政策可以降低生命周期成本,与由所有主要港口用户组成的单一能源社区相比,多个虚拟聚合可在 20 年内节省 600 万欧元的成本。
住友理工株式会社(总部:名古屋市中村区;总裁兼首席执行官:清水一志;以下简称“住友理工”)与 JFE 工程集团旗下的 Urban Energy Corporation(总部:横滨市鹤见区;总裁首席执行官:小林淳;以下简称“Urban Energy”)、J&T Recycling Corporation(总部:横滨市鹤见区;总裁兼首席执行官:长谷场博之;以下简称“J&T Recycling”)及其子公司 Bios Komaki Company Limited(总部:爱知县小牧市;总裁兼代表董事:广部智树;以下简称“Bios”)合作,自 6 月起将住友理工研究所“Technopia”(爱知县小牧市)使用的所有电力转换为大量可再生能源,作为实现碳中和的努力之一。
电力行业正在发生的重大技术变革与上个世纪的技术历史(分散化、脱碳化和数字化)有着质的不同,监管机构面临的政策目标已经扩大到优先考虑脱碳。但电力行业和监管机构存在节奏问题,技术变革的速度远远超过了制度变革的缓慢步伐。在受回报率监管的行业中实施此类变革的制度挑战是巨大的,因为这些新技术在特征、能力和系统影响方面差异很大。本文使用奥斯特罗姆研讨会制度分析与发展 (IAD) 框架在技术冲击下对公用事业监管进行映射练习。映射练习构建了一个概念性的“理想类型”风格化模型,该模型是 20 世纪大型机电技术与公用事业回报率监管相结合的产物,以 IAD 框架作为模型结构,然后将该组合与代表 DER 和数字技术及其功能的风格化模型进行比较。风格化的“技术冲击”模型基于交易能源,它将能源设备连接到本地能源市场,使其能够根据所有者偏好提交投标,并根据市场价格自动设置设备,以实现分散的供需协调。
灌溉系统仅覆盖尼泊尔 40% 的农业用地,尼泊尔只有 19% 的灌溉土地获得全年灌溉 (YRI) 1。由于许多农民依赖雨养种植,气候变化带来的挑战日益严峻,加剧了可持续生产和生计的困难。此外,尼泊尔多样化的地理区域导致丘陵和平原之间的灌溉和技术获取分布不均,需要量身定制的解决方案。需要进行重大的政策变革,重新构想尼泊尔的现代灌溉计划,通过可再生能源灌溉确保 YRI,并加快农业部门的能源转型,使其更具包容性、可持续性和可扩展性。过去十年,太阳能灌溉等可再生能源解决方案作为一种气候适应型技术在尼泊尔农民中越来越受欢迎。最近的数据显示,尼泊尔正在逐步从基于化石燃料的灌溉转向太阳能等更可持续的可再生能源。 ICIMOD PURE 平台还显示,尼泊尔未满足灌溉条件的地区需要额外 1300 兆瓦的电力容量用于提水灌溉。为期一天的研讨会由替代能源促进中心 (AEPC)、国际水资源管理研究所 (IWMI) 和国际山地综合发展中心 (ICIMOD) 联合组织,旨在将政策制定者、研究人员、私营部门、发展伙伴、民间社会和其他主要利益相关者聚集在一起,就扩大可再生能源计划开展科学政策对话。本次研讨会将展示瑞士发展与合作署 (SDC) 资助的南亚农业恢复力太阳能灌溉 (SoLAR-SA) 和挪威王国大使馆资助的 GEM 尼泊尔项目的证据和研究成果。研讨会主要侧重于扩大太阳能灌溉计划,通过利用证据和集体见解来克服挑战和促进有效的解决方案,优先考虑包容性和可持续性。
能源安全和稳定供应是任何国家最重要的方面。人口增长和经济活动导致的能源需求不断增长,是全球许多国家面临的问题。因此,他们必须找到一种方法来满足能源需求,同时确保能源价格低廉且可持续。可再生能源的使用已逐渐受到广泛关注,因为它不会对环境造成任何危害。另一方面,可再生能源因各种不同的原因而越来越受欢迎。向可再生资源的范式转变是相关的,因为它们能够减少对化石燃料的依赖并减少环境后果;本文将提供可再生能源在全球范围内引起关注的几个原因。事实上,可再生能源丰富、清洁,有朝一日可能会满足我们所有的能源需求。一个国家可以通过投资可再生能源来减少碳足迹和对化石燃料的依赖。此外,空气和水污染还会带来一些健康和环境问题;然而,可再生能源可能有助于减少这些问题。
新不伦瑞克省的能源包括电力,石油产品,天然气,煤炭和生物燃料(包括生物质,沼气,可再生天然气和乙醇混合到汽油中)。在2022年,新不伦瑞克省使用的能源的23%是由电力提供的,有17%由生物燃料组成。其余60%的能源大部分是通过石油产品,天然气和其他温室气体发射燃料提供的。在本节中,我们更详细地讨论能量的类型,以及如何和何处使用能量。本节中的数据来自加拿大能源监管机构加拿大净零2022数据集。
摘要:水产养殖系统需要仔细考虑位置,因为位置决定了水质、污染影响和危险情况。移动性可能能够解决这些因素,同时还支持全年使用风能、波浪能和太阳能等可再生能源。本文以专门建造的移动式水产养殖船为例,结合可再生能源收集能力对其进行建模,以评估利用高可再生能源潜力为水产养殖作业提供动力的潜在好处。创建并调整了路线优化算法以模拟水产养殖平台的移动性,并与固定系统进行了成本基础比较。当结合多种资源时,可再生能源潜力的空间变化很小,这严重限制了移动式、可再生能源水产养殖系统的好处。另一方面,通过混合多种可再生能源(装机风电容量13千瓦、装机太阳能661平方米、特征宽度1米的波浪能转换器)持续收集能源表明,可以在不显著增加能源收集器成本的情况下实现移动平台对近海水产养殖的潜在益处(减轻环境和社会问题、对产量产生潜在的积极影响、避免危害等)。
基于可再生能源的分散式电力生产解决方案在非洲日益得到使用,以促进农村地区人口的社会融合。在这些没有电网覆盖的地区,移动网络运营商安装的网络基础设施越来越多,这些网络基础设施由发电机组供电。这些能源仅用于为站点元素提供电力,而当地居民没有电。在这些运营商站点上使用基于可再生能源(特别是太阳能)的微电网有助于实现可持续发展目标的第 7 和第 9c 项。事实上,这些微电网的智能管理可以确保向移动网络运营商站点持续供电,并利用过剩生产为当地居民提供电力。为了实现基于这些微电网的电信和能源普遍接入之间的融合,使用优化算法来更好地规划和提高这些微电网的运行效率至关重要。为此,在多源多负载系统中使用粒子群优化算法进行最佳功率流管理,以测试微电网实现这一新目标的能力。结果表明,这些微电网的最佳管理可保证电力供应损失概率为 0.18%,平准化电力成本为 0.0187 美元,最大可再生系数为 98%。获得的低电力成本表明,该解决方案是提高农村低收入人群普遍用电的真正机会。同样,获得的最大可再生系数值表明发电机组的运行时间减少,从而显著降低运营成本和温室气体排放。
估计食品系统使用的功率的80%来自化石燃料。3目前为满足到2050年对食品需求增加的60%的努力 - 到本世纪中叶预期的100亿人口,将使全球范围超过1.5摄氏度的极限。4随着当前的农业群体系统加速气候变化 - 越来越高温,海平面上升,干旱增加,该行业养活人口的能力越来越多。(图1)气候不知道国家线或民族边界;全球北部造成了绝大多数气候变化的原因,但该协会对整个全球南部地区造成的粮食气候危机的加剧造成了最小的责任。这种不平等有可能破坏区域经济和全球环境 - 撒哈拉以南非洲等地区的弱势粮食系统的障碍,以跟上地区人口增长的步伐。5,6
