随着间歇性可再生能源(例如风能和太阳能)的大规模增长和网格连接,可再生能源降低速度和系统备份功能提高的问题已经变得越来越突出。为了解决高比例可再生能源科学消耗和能量系统的稳定运行的问题。我们提出了一种基于数据驱动的多区域电源系统的灵活且经济的调度方法。对于多区域电力系统的经济派遣问题,建立了数学计算模型,以满足单位输出,系统功率平衡,单位坡道速率和阀点效应的限制,并考虑将多区域功率负载的成本最小化。基于数据驱动的,本文采用了改进的水果优化算法来快速找到全球最佳解决方案。通过IEEE6仿真测试系统进行计算,结果验证了所提出的算法的可行性。考虑到获得的溶液的质量,比较了改进的水果优化算法并与其他算法进行了分析。结果显示了拟议算法在解决实际电力系统中多区域经济派遣问题方面的有效性和优势。
摘要:地表城市热岛(Suhis)对于评估城市热环境至关重要。但是,Suhis的当前定量研究忽略了热辐射方向(TRD),这直接影响了研究精度。此外,他们无法评估不同土地利用强度对Suhis定量研究的TRD特征的影响。为了弥合这一研究差距,这项研究消除了2010 - 2020年Hefei(中国)的MODIS数据和空气温度数据,从MODIS数据和空气温度数据中量化了大气衰减和每日温度变化因子的干扰。通过比较Hefei的不同土地利用强度下的TRD来评估TRD对SUHI强度定量的影响。结果表明:(1)白天和夜间方向性最高可达到4.7 K和2.6 K,并分别发生在最高和中等城市土地使用强度的区域。(2)对于白天的城市表面,有两个显着的TRD热点,其中传感器天顶角与原来的太阳能天顶角大致相同,而传感器Zenith角度在下午的Nadir附近。(3)TRD可以根据卫星数据评估SUHI强度的结果2.0 K,这约占Hefei总SUHI的31-44%。
这项研究得到了日本科学技术振兴机构 (JST) 战略基础研究促进计划 CREST“用于长 DNA 合成和自主人工细胞创建的人工细胞反应器系统”研究领域 (编号 JPMJCR19S4)、GteX“大规模并行蛋白质打印机系统的开发”研究领域 (编号 JPMJGX23B1)、ASPIRE“日英合作开发人工光合细胞系统”(编号 JPMJAP24B5) 和科学研究补助金“Kikagaku S”(编号 JP19H05624) 的支持。 术语表(注1) 真核生物:具有细胞核并被核膜包围,且含有线粒体等细胞器的生物的统称。它们包括动物、植物和真菌,具有比原核生物更复杂的细胞结构。 (注2)内在无序蛋白质是在生理条件下不能形成三维结构的蛋白质,与酶等折叠成特定的三维结构才能发挥功能的蛋白质不同。分子间多样化的相互作用网络推动液-液相分离,形成称为凝聚层的液滴。 (注3)液-液相分离:均质液体混合物自发分离成两个具有不同成分的液相的现象。单一聚合物(如天然存在的变性蛋白质)可发生相分离,形成致密相和稀相,或者两种不同组成的致密相(如葡聚糖和聚乙二醇)。 (注4)肽标签:一种用于连接特定蛋白质的短氨基酸序列。通过将DNA序列遗传整合到蛋白质中,可以很容易地将其添加到蛋白质中。本研究中使用的肽标签具有拉链式结构,使得它们能够相互互锁并进行特定结合。另一方面,由于它几乎不与其他分子或蛋白质结合,因此可以利用这一特性选择性地将特定蛋白质结合在一起。在该系统中,一个肽标签附着在IDP上,另一个肽标签附着在要掺入IDP相的蛋白质上。 (注5)分子信标:用于检测特定DNA或RNA序列的核酸探针,具有包含荧光染料和猝灭剂的环状结构。在没有目标序列的情况下,荧光就不会出现,但一旦与序列结合,分子的形状就会发生变化,发出荧光并变得可检测。这可以实时确认样本中特定基因或 RNA 的存在。
执行摘要 4 1. 介绍 9 2. 现有的二氧化碳市场 11 2.1 现有需求 12 2.1.1 现有的二氧化碳需求预测 13 2.2 现有的供应 13 2.2.1 现有的二氧化碳供应预测 14 3. 潜在的未来二氧化碳市场 15 3.1 潜在的未来二氧化碳需求 15 3.1.1 电子燃料、化学品和塑料 15 3.1.2 建筑材料 18 3.1.3 园艺(温室) 18 3.1.4 新兴需求预测 19 3.2 潜在的未来二氧化碳来源 22 3.2.1 点源:化石燃料和工业过程 22 3.2.2 生物源 24 3.2.3 直接空气捕获(DAC) 26 4. 二氧化碳平衡 29 4.1 DAC 二氧化碳需求量与电子煤油需求量 30 5. 直接空气捕获规模扩大 32 5.1 短期:2025 年和 2030 年 32 5.2 长期:2035 年至 2050 年 33 5.2.1 专家观点 34 5.2.2 增长率 34 5.2.3 二氧化碳捕获的平准化成本 38 5.2.4 能源需求 41 6. 二氧化碳利用率(按来源) 44 6.1 基于捕获成本的最佳二氧化碳来源 44 6.2 基于温室气体排放的最佳二氧化碳来源45 6.3 二氧化碳利用的地理、经济和监管考虑因素
2022 年 7 月 28 日 — 我在此证明。上述地图是真实的。正确表示。在第 5 节中进行的调查。IT 5 N. OTS。ITSBURG。/COUNTY,OKLÁNOMA。
2022 年 9 月 24 日 — 我确信。ABOVÝ PLAT 是真实的。COMMECT 代表。在第 SECTION 中进行的调查。________T^G^N ‚M-16-E。 匹兹堡。俄克拉荷马州县。
海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。
感谢我的两位论文导师 Pascal Allemand 和 Christophe Delacourt。感谢您信任我,为我投入时间,并为我提供完成这个项目的方法。感谢 Christophe 的热情、活力和自发性。感谢帕斯卡的冷静、专注、严谨和积极进取(“摇滚之心”)。我要热烈感谢帕特里克·莱德鲁。在这三年里,我受益于你们的动力、你们的能量、你们的支持和你们的地质知识。感谢 Herv´e Le Borgne,没有他我就会淹没在资料来源的独立性中。感谢您对我们的所有讨论、鼓励以及对本研究的参与。感谢奥利维尔·布尔乔亚在纳米比亚战场上陪伴我们。与您分享这次旅行,无论是为了深夜谈话还是为了我作为一名野外地质学家的学徒,我真的很高兴。感谢 Ondrej Sramek,他为约束下光谱混合物分析的编程做出了贡献。感谢您投入的时间、动力和兴趣。感谢托马斯·贝克对我们的研究和结果如此热情(感谢您通过烧烤向我们介绍了纳米比亚生活的一部分)。还要感谢 Serge Elmi 让我参与他在摩洛哥的测绘项目。