$%! ! & ' '(!)' * $+# % $+# , %! - . - * / ! & $0 (! 0 1! * % * ! +# , ! - ( (1 2 - $ - 3 4 5 % ' - & 6 & ( ' !!! ! * $ % +# , (1 ' ! +# , - " ! - * ' 7' & & * $0 ( % * $0 1 % 8 4 - & - & * 6 !& " !$&&'--'-%-&!4'-
表格列表 表号 标题 12.2-1 设计辐射源清单计算中使用的选定参数(历史) 12.2-2 设备位置 12.2-3 堆芯清单(历史) 12.2-4 燃料组件的辐射源强度(径向峰值因子为 1.65) 12.2-5 辐射源术语,安全壳结构(历史) 12.2-6 再生热交换器和过量排放热交换器(历史) 12.2-7 辅助建筑物的辐射源术语(历史) 12.2-8 冷凝水精处理建筑物的辐射源术语(历史) 12.2-9 辐射源术语,废物处理建筑物(历史) 12.2-10 辐射源术语,LOCA 后集水坑水(历史) 12.2-11 辐射源术语,LOCA 后一次冷却剂(历史) 12.2-12 辐射源术语,LOCA 后取样系统(历史) 12.2-13 辐射源术语,LOCA 后安全壳大气(历史) 12.2-14 辐射源术语,LOCA 后安全壳外系统的安全壳大气(历史) 12.2-15 反应堆冷却剂 N-16 活度(历史) 12.2-16 燃料池水中的预期浓度(历史) 12.2-17 燃料池水中的设计浓度(历史) 12.2-18 辐照堆芯探测器和驱动电缆最大抽取源强度(历史) 12.2-19 辐照堆芯探测器驱动电缆源强度(历史) 12.2-20 关闭条件下的辐射源术语(4 小时衰减)(历史)
根据多伦多市议会 2017 年 12 月的指示,2020 年 1 月 1 日或之后收到的新开发申请将需要遵循《能源效率报告提交和建模指南》(能源建模指南)第 5 节中规定的绝对性能目标路径。根据此路径,大型第 3 部分开发项目必须证明符合适用目标:总能源强度 (TEUI)、热能需求强度 (TEDI) 和温室气体强度 (GHGI),这些目标在 TGS 能源/温室气体和弹性部分中提供。
PCAF 欧洲建筑排放因子数据库由 Guidehouse Dutch BV 代表 PCAF 创建,为金融机构提供了一套针对所有欧盟国家以及挪威、瑞士和英国的抵押贷款和商业房地产的特定排放因子。该数据库的主要目标是使金融行业能够衡量和跟踪其欧洲建筑组合的融资排放量,以实现净零排放。根据数据的可用性,金融机构能够区分资产类别、欧洲国家、住宅和非住宅建筑类型以及能源性能证书 (EPC) 评级,以从数据库中提取每层楼面积或单位的指定排放量或能源强度。
今年,我们提高了节能减排目标的宏伟目标,以确保我们实现基于科学的目标。我们更新后的能源强度目标是到 2030 年将能源强度与 2013/14 年基线相比降低 45%。与 2013/14 年基线相比,我们已将投资组合能源强度降低了 34%。与去年相比,能源强度有所增加,主要是由于 Covid-19 限制的放松导致入住率和客流量增加。虽然入住率有所增加,但入住率仍低于疫情开始前的水平。此外,我们采取行动延长供暖、通风和空调服务的运行时间,以最大限度地降低病毒扩散的风险,从而导致更高的能源使用量。因此,能源性能仍然不能反映疫情前正常的建筑运行情况。
近年来,在全球化和结构调整的某些条件下,区域经济的作用发生了重大变化。变化过程对于分析区域经济和制定区域经济规划至关重要。发展中经济体往往依赖于产业和国家政策。现代研究倾向于参与该领域的重要因素,如能源强度、劳动力技能、当地产业、资源和当地专业知识。此外,在这项研究中,为了开始发展区域经济并在该领域进行革命以将其与新技术联系起来,我们训练了深度学习算法来收集因素以完美地管理它们并对未来经济做出良好的预测。混合序列到序列 (seq2seq) 深度学习算法以过去几年的先前信息为基础,并运行系统将预测结果数据与当前信息进行比较,以评估未来几年要认证的方法。
可再生能源和能源效率领域出现了颠覆性技术,这些技术迅速改变了全球能源格局。颠覆性技术是指能够创造新商业模式并颠覆传统商业模式的技术。这些颠覆性技术引发了技术能力、数字化转型、成本、新商业模式和政策变化的革命。许多与能源相关的技术已成为改变亚太经合组织地区和世界能源供需格局的因素。亚太经合组织经济体已商定了两个与能源相关的目标:1)到 2035 年将能源强度降低 45%;2)到 2030 年将可再生能源的比例增加一倍。因此,新的颠覆性能源发展有助于实现亚太经合组织的目标,并确保可靠、负担得起和可持续能源的利润。
革命性的 DirectPort 技术将现有港口改造成下一代港口。DirectPort 可以增加容量、提高性能、增加新功能,同时降低运营成本。它能够为绿地港口的位置增加灵活性,因为它消除了吃水、陆地/陆上空间以及腹地连通性的联系。DirectPort 改造了港口的运输和物流基础设施及其与腹地的连通性,使其比最好的更好。它将基于 BC、AI、IOT、IT、电信、信号和控制系统的最先进的自动化融入到运输和物流基础设施中,以改变港口生态系统。技术实现了这种转变,具有商业、经济和环境可行性和可负担性,而无需依赖土地征用。DirectPort 和 e-FTS 的创新系统和自动化将真正成为港口 2.0 的标杆。DirectPort 通过将能源强度降低高达 90%,空间需求降低高达 70%,运营成本降低高达 70%,重新定义了港口。它可以将码头生产力提高 4 倍。与传统设计相比,DirectPort 可将绿地项目成本降低 30-60%,同时消除土地、水和环境退化等关键制约因素。特点
备注: (1) 自 2020 年起,国际栏包括缅甸和马来西亚资产。 (2) 2021 年,泰国 G2 资产栏仅包括过渡期活动。 (3) 自 2021 年起,直接能源消耗总量分为不可再生能源消耗和可再生能源消耗两类。 (4) 2020-2022 年按一次能源来源 (购买的电力) 计算的间接能源消耗总量经过修订,并反映在总能源强度中。 (5) 不包括油井服务通风产生的温室气体排放。 (6) 自 2022 年起,使用 2017 年马来西亚 CDM 电力基线修订了马来西亚间接排放的温室气体排放因子。 (7) 臭氧消耗物质 (ODS) 仅包括氢氯氟烃 (HCFC)。 (8) 重大碳氢化合物泄漏量超过 1 桶。 (9) 自 2020 年起,水和废水数据按照 GRI: 303 (2018) 报告。 (10) 根据 GRI: 303 (2018),由于包括生产水,所有地区的总取水量有所增加。 (11) 自 2018 年以来,水风险评估已涵盖缅甸和马来西亚等国际资产。 (12) 自 2020 年起,水资源紧张地区由 WRI Aqueduct Tool 分类。