由于电解质被玻璃纤维吸收,并且电池用泄压口密封,AGM RG ® 电池的自放电率是溢流电池的 1/3,溢流电池的通风口通向大气,使电池内的水蒸发。所有铅酸电池都会自放电,并在极板上产生硫酸盐副产品。补充溢流电池中流失的水分不会逆转硫酸盐化。为了延长使用寿命,所有铅酸电池都应在充满电的情况下存放在凉爽的环境中(自放电率较低),或使用飞机电池专用浮充充电器进行维护。
本报告介绍了卡特里娜飓风过后几组研究人员进行的实地调查结果,旨在研究区域防洪系统的性能以及新奥尔良地区发生的洪水和损失。这些努力的主要重点是获取与防洪系统性能相关的易逝数据和观测数据,以免它们因正在进行的应急响应和修复操作而丢失。最初的实地调查持续了大约两周半的时间,从 2005 年 9 月 28 日到 10 月 15 日。这些实地调查的开始日期是通过平衡在紧急修复操作损坏或掩盖之前收集重要易腐数据的需要与避免干扰此类紧急操作的需要以及与安全访问、后勤等相关的问题来确定的。幸运的是,主要的实地调查小组及时到达,因为有很多次,小组单位在正在进行的紧急修复活动覆盖重要信息之前几天甚至几个小时才到达并调查现场。飓风卡特里娜 (Hurricane Katrina) 产生的风暴潮导致新奥尔良大约 75% 的大都市区出现多处溃坝,随后被洪水淹没。大多数堤坝和防洪墙的溃坝都是由溢流引起的,因为风暴潮越过了堤坝和/或防洪墙的顶部,产生了侵蚀,随后导致溃坝和溃口。溢流在防洪系统的东侧最为严重,因为博格尼湖的水向西流向新奥尔良,并沿着密西西比河的下游向南流去。严重的溢流和侵蚀在这些地区造成了许多溃口。内港航道 (IHNC) 沿线和密西西比河湾出口 (MRGO) 航道西段的溢流程度较小,但这次溢流再次产生了侵蚀并导致更多的堤坝溃坝。现场观察表明,庞恰特雷恩湖前的大部分堤坝几乎没有发生溢流,但在多个地点观察到了轻微溢流和/或波浪溅溢的证据。新奥尔良东部保护区西北角的堤坝系统出现裂缝,靠近湖畔机场。这三处堤坝垮塌很可能是由堤坝下方的地基土壤破裂引起的,再往西,在奥尔良东岸运河区,第 17 街和伦敦大道运河沿岸发生了三处堤坝溃坝,溃坝时的水位低于运河沿岸防洪墙的顶部。
我们正在优先考虑频率比预期的更频繁的风暴溢出。其中一些由我们2020 - 2025年的高优先级计划涵盖,该计划针对11个最高排放的风暴溢出,并以特定的投资为目标。除此之外,还需要各种解决方案来解决导致风暴溢出的多个方面问题。我们的风暴溢流行动计划中的解决方案包括创建可持续的排水,以减少雨水进入下水道,而允许其自然排出土壤,进行操作改进以及附近的下水道的定期喷射,以使其避免堵塞和碎屑堆积。结合使用,这样的动作将有助于保持下水道自由流动,减少过载和暴风雨溢流的可能性。
日期 时间 事件 切片编号 高度(英寸) 重启 暴露在空气中? 2020 年 1 月 16 日 构建完成 8889 14 2020 年 1 月 14 日 5:10 断电 8764 13.805 7:01 无主动清除,腔室密封 2020 年 1 月 11 日 14:13 电压下降 8084 12.731 14:25 无主动清除,腔室密封 2020 年 1 月 8 日 17:41 空溢流 6562 10.332 18:47 暴露在空气中 2020 年 1 月 4 日 12:48 空溢流 2968 4.674 13:14 暴露在空气中 2019 年 12 月 30 日 构建开始 0 0
应用指南 AGCL-1134 在密封容器中储存一段时间后会变稠。使用前必须彻底混合材料,以重新分散任何沉淀的银颗粒,并使油墨恢复到更理想的粘度。应注意尽量减少材料暴露在光线下。印刷材料的印刷机上方应使用黄灯、黄色屏幕或紫外线过滤器。湿度需要保持在中等水平,因为水分也会在较长时间内影响氯化银。建议使用单丝聚酯(180 至 260 目)屏幕,乳剂厚度在 0.001 英寸至 0.003 英寸之间。建议使用邵氏“A”硬度计在 60 至 70 之间的聚氨酯刮刀。所有搅拌刀片、溢流棒和刮刀表面都不得有金属。金属,尤其是铝,会与氯化银发生剧烈反应。如果使用金属溢流棒和器具,必须用惰性胶带(如特氟龙胶带)完全包裹它们。
应用指南 AGCL-675 在密封容器中储存一段时间后会变稠。使用前必须彻底混合材料,以重新分散任何沉淀的银颗粒,并使油墨恢复到更理想的粘度。应注意尽量减少材料暴露在光线下。印刷材料的印刷机上方应使用黄灯、黄色屏幕或紫外线过滤器。湿度需要保持在中等水平,因为水分也会在较长时间内影响氯化银。建议使用单丝聚酯(180 至 260 目)屏幕,乳剂厚度在 0.001 英寸至 0.003 英寸之间。建议使用邵氏“A”硬度计在 60 至 70 之间的聚氨酯刮刀。所有搅拌刀片、溢流棒和刮刀表面都不得有金属。金属,尤其是铝,会与氯化银发生剧烈反应。如果使用金属溢流棒和器具,必须用惰性胶带(如特氟龙胶带)完全包裹它们。
已经创建了溢出机学习机翼性能(PALMO)数据库,以实现各种应用程序中的机翼性能的强大建模。数据库使用溢出仿真数据二阶精确,并在Spalart-Allmaras湍流闭合时在空间上精确精确。开发棕榈数据库的基础是翼型基座立方体。每个基本立方体都包含在一系列的MACH数字,雷诺数和攻击角度的范围内参数化的模拟数据。数据库的第一个版本包括NACA 4系机翼,在机翼厚度中具有参数化,从NACA 0006到NACA 4424。总共在NASA高端计算能力(HECC)超级计算机上运行了52,480个NACA 4系列计算,并且将相应的机翼性能系数嵌入本文档的附录中,以进行公共分布。这提供了涵盖广泛的航空航天设计应用程序的高级精确模拟数据,该应用使用户能够开发溢出质量的机翼性能查找表,而无需其他高性能计算。除了对航空航天车的工程设计和分析外,Palmo非常适合作为航空航天工程中机器学习方法开发和测试的基准数据集。下游替代模型可实现溢出质量的机翼性能预测,以预测数据库范围内的室内,厚度,马赫数,雷诺数和攻击角度的任何任意组合。