传感策略正在发展越来越多地集中在超低检测阈值和高度选择性设备上。这些性能可以通过纳米技术来启用,这要归功于印度定义,自上而下的结构[1-3]或化学/生化获得的,即自下而上的构造[4-6]。可以用基于石墨烯的纳米结构来表示自上而下和自下而上的方法之间的一种桥梁。石墨烯是一种二维材料,该材料由六边形晶格结构中的单层碳原子组成[7]。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。 使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。 材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。在一些最成功和/或研究的中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常的材料来利用石墨烯衍生物的特殊机械电阻。中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常
作者的完整列表:Xia,Xinxin;香港中国大学,勒;香港城市大学,成谷; Zhejiang University Chen,Zeng; Yao,Nannan Yao;生物分子和有机电子学,物理,化学和生物学系,林克平大学,SE-581 83,瑞典林肯,Qin,Minchao;鲁伊香港中国大学; Zhenzhen张大学武汉大学高级研究所; Yuyu化学研究所CAS PAN; Shenyang技术大学,Yiqun石油化学工程学院;香港林的中国大学Yuze; iccas,; Min,Jie;冯汉大学高级研究所,冯汉;链接大学,物理,化学和生物学; Jinan University,Physics Zhu,Haiming;吉安格大学,布雷达斯,让·卢克;亚利桑那大学,化学与生物化学陈,洪宗;千江大学聚合物科学与工程系的郑大学;香港城市大学,新华社化学,材料科学与工程学;香港中国大学,物理
小胶质细胞神经蛋白浮肿在早期病理阶段似乎是神经保护作用的,但神经毒性通常是在阿尔茨海默氏病(AD)的神经变性之前进行的。然而,由于复杂的神经元-GLIA相互作用,小胶质细胞活性在AD进展过程中如何转移到神经毒性状态。在这里,探索了探索3D人类AD小脑,AD患者的脑组织和5XFAD小鼠的AD中有害小胶质细胞增多的机制。在人类和动物AD模型中,淀粉样蛋白β(A 𝜷)过表达的神经元和反应性星形胶质细胞产生干扰素 - γ(IFN𝜸)和过度的氧化应激。IFN𝜸会导致有丝分裂原激活的蛋白激酶(MAPK)的下调以及在微胶质细胞中kelch样ECH样蛋白1(KEAP1)的上调,这些蛋白1(KEAP1)失活核因子红细胞因子 - 红细胞 - 核酸2(NRF2)和敏感性因素和敏感性敏感性和敏感性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性作用。 kappa b(nf𝜿B) - 轴。 促进弹性小胶质细胞反过来会产生神经毒性一氧化氮和促进弹性介体加剧突触障碍,磷酸化的TAU积累和可分辨的神经元丧失。 有趣的是,在小胶质细胞中恢复NRF2可防止促进性小胶质细胞的激活,并且显着阻止了Ad Minibrain的Tauopathy。 综上所述,可以预见,小胶质细胞中IFN 𝜸驱动的NRF2下调是改善AD病理学的关键靶标。IFN𝜸会导致有丝分裂原激活的蛋白激酶(MAPK)的下调以及在微胶质细胞中kelch样ECH样蛋白1(KEAP1)的上调,这些蛋白1(KEAP1)失活核因子红细胞因子 - 红细胞 - 核酸2(NRF2)和敏感性因素和敏感性敏感性和敏感性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性作用。 kappa b(nf𝜿B) - 轴。促进弹性小胶质细胞反过来会产生神经毒性一氧化氮和促进弹性介体加剧突触障碍,磷酸化的TAU积累和可分辨的神经元丧失。有趣的是,在小胶质细胞中恢复NRF2可防止促进性小胶质细胞的激活,并且显着阻止了Ad Minibrain的Tauopathy。综上所述,可以预见,小胶质细胞中IFN 𝜸驱动的NRF2下调是改善AD病理学的关键靶标。
h 2 O 2在水溶液中的浓度已通过532 nm拉曼态度来确定。h 2 O 2是一种高需求的绿色氧化剂,其H 2和O 2的直接合成是传统生产过程的有前途的替代方法。拉曼光谱是针对H 2 O 2量化的快速,无损和可靠的分析技术,它避免了传统的碘测定的缺点(样品提取,制备了试剂的制备和长时间的分析)。已经设计了一个高压视图单元,以促进高压下的测量,通常在直接合成过程中发现。已经开发了一个彻底的校准模型,并在高压(5.0 MPa)和温度(最高45℃)的情况下进行了阀门。溶剂(水)用作纠正乘法扭曲的内标。分析技术的验证与经典碘化滴定相比产生了可重现和准确的结果,从而使单个校准模型用于一系列反应条件。通过在不同条件下分析H 2 O 2的分解反应,已建立了拉曼光谱对实时定量反应监测的可行使用。©2010 Elsevier B.V.保留所有权利。
对卫生政策/实践/研究/医学教育的影响:Holarrhena Pubescens种子的乙醇提取物的连续溶剂分数显示在体外实验中显示抗菌,抗氧化剂和抗炎症潜能。体外研究的选定生物活性分数还表明,在大鼠模型中辅助诱导的关节炎的体内实验中,可以治疗慢性炎症。因此,该植物的种子可以用作天然抗氧化剂,抗菌和抗炎药。然而,需要进一步的研究才能了解该药物在其抗炎活性中的作用机理。请引用该论文为:Saha S,Subrahmanyam Evs。评估Holarrhena Pubescens(Buch.-Ham。)抗菌,自由基清除和抗炎活性墙。使用体外方法的种子和使用体内方法评估抗性势。J Herbmed Pharmacol。2025; 14(1):82-89。 doi:10.34172/jhp.2025.52731。
构成梭菌属的革兰氏阳性、产芽孢、专性厌氧厚壁菌种具有广泛的原料消耗能力并产生增值代谢产物,但基因操作困难,限制了它们的广泛吸引力。CRISPR-Cas 系统最近已应用于梭菌种,主要使用 Cas9 作为反选择标记与基于质粒的同源重组结合。CRISPR 干扰是一种通过精确靶向核酸酶缺陷型 Cas 效应蛋白来降低特定基因表达的方法。在这里,我们开发了一种基于 dCas12a 的 CRISPR 干扰系统,用于抑制多种中温梭菌种的转录基因。我们表明,与源自其他细菌的 CRISPR Cas 系统相比,由于梭菌种中的 GC 含量低,基于新凶手弗朗西斯菌 Cas12a 的系统具有更广泛的适用性。我们证实,丙酮丁醇梭菌中靶基因的转录水平降低了 99% 以上,巴氏梭菌中靶基因的转录水平降低了 75% 以上。我们还通过使用单个合成 CRISPR 阵列证实了多重抑制,靶基因表达降低了 99%,并阐明了其表达降低的独特代谢特征。总体而言,这项工作为无需基因编辑的高通量遗传筛选奠定了基础,而基因编辑是梭菌群落当前使用的筛选方法的一个关键限制。
摘要:锂(LI)金属电池(LMB)由于其超高理论能量密度而被视为最有前途的储能系统之一。但是,LI阳极的高反应性导致电解质的分解,从而对LMB的实际应用产生了巨大的障碍。常规试验方法在为LI金属阳极设计高度稳定的溶剂分子时效率低下。在此,提出了一种数据驱动的方法来探测溶剂还原稳定性的起源,并加速了晚期电量的分子设计。首先使用基于图理论的算法构建一个潜在溶剂分子的大数据库,然后通过第一原理计算和机器学习(ML)方法进行了全面研究。根据最低无占用分子轨道(LUMO)的分析,在离子 - 溶剂复合物的优势下,99%的电解质的还原稳定性下降。Lumo能级与结合能,键长和轨道比因子有关。基于沙普利添加剂解释的一种可解释的ML方法将偶极矩和分子半径识别为影响协调溶剂的还原性稳定性的最关键描述。这项工作不仅为离子溶剂化学提供了富有成果的数据驱动的见解,而且还揭示了调节溶剂的还原稳定性的关键分子描述子,从而加速了下一代LI Batteries的高级电解质分子的合理设计。8 - 11■简介可充电电池的出现彻底改变了现代技术,催化了大规模网格和无数消费电子产品的开发,例如智能手机,笔记本电脑和电动汽车。1-3,尤其是锂(Li)离子电池(LIBS),是最广泛的可充电电池之一,具有显着改变的能量能量和生活方式习惯的模式。4-7尽管Libs由于明显的优势而占据了可充电电池市场多年的主导地位,但它们的实用能量密度正接近理论上的限制。因此,由于现代社会的需求不断增长,因此需要强烈需要下一代高能密度。
除了上述技术外,PNNL 还拥有丰富的专业知识,可以定制适用于废弃 CO 2 和其他酸性气体的催化工艺。将这些产品转化为低碳燃料或化学原料可以为碳利用提供一条经济有效的途径,特别是对于重要的商品产品,例如甲醇。例如,PNNL 研究人员使用基于壳聚糖/PEG 200 的捕获溶剂介质从捕获的二氧化碳中制造甲醇,壳聚糖/PEG 200 是从废弃的虾壳中提取的。这是一种绿色替代品,可以替代毒性更大的碳转化解决方案,使用壳聚糖和氨与氢气代替捕获的二氧化碳来制造有价值的化学品。
这项工作介绍了3-甲基-2-恶唑烷酮(Jeffsol®Meox)作为N-甲基-2-吡咯烷酮(NMP)的替代溶剂,用于制造锂离子电池。nmp是聚乙烯二氟化物(PVDF,一种常见的粘合剂材料)的良好溶剂,并且具有高沸点(202°C),从而使电极浆液逐渐干燥以形成同质涂层。但是,NMP具有抗毒性效果,其使用正在引起立法压力的增加。对于电池制造行业来说,找到更良性的替代方案将是有利的。在少数几种容易溶解PVDF的溶剂中,诸如二甲基甲酰胺之类的示例也具有显着毒性,因此需要进一步研究才能找到可靠的替代溶剂系统。我们表明,Jeffsol®Meox(225°C沸点)能够在可及温度(40°C - 50°C)下溶解PVDF,并且以相似的活性材料比例溶解PVDF:活性材料的比例相似:粘合剂:溶剂,Jeffsol®Meox和NMP的shmp shorderies and and and and and sherries均以5-6 pa.s的速度产生5-6 pa.s的速度。 。使用Jeffsol®Meox制造和NMP制造的阴极涂层形成的细胞表现出可比的电化学性能。©2024作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ad77b1]