摘要:溶菌酶是动物先天免疫系统的通用成分,它们通过水解其主细胞壁聚合物肽聚糖而杀死细菌。已经确定了三个主要的溶菌酶家族,称为鸡(c) - ,鹅(g)和无脊椎动物(i)-type。在反应中,细菌对三个溶菌酶家族中的每一个都进化了特定的蛋白抑制剂。在这项研究中,我们开发了由三个由C-,G-和I型型抑制剂功能化的三个Af-fiential矩阵的序列阵列,用于溶菌酶键入,即检测和区分溶菌酶从动物中流动或提取物。该工具在蓝贻贝(Mytilus Edulis)上进行了验证,其基因组具有多种推定的I-,G-和C型溶菌酶基因。血淋巴等离子体包含I-和G型,但不含C型溶菌酶。此外,分别分析了缺乏或过量产生I-type或G-type溶菌酶抑制剂的嗜水和大肠杆菌菌株的血淋巴存活,以研究两种溶菌酶在先天免疫中的作用。结果表明,G型溶菌酶在蓝贻贝的先天免疫中发挥了积极作用,但未能显示I-type溶菌酶的贡献。使用基于抑制剂的AFINIDE色谱法进行溶菌酶填充将是研究动物先天免疫的有用新工具。
摘要 Proaerolysin 是由嗜水气单胞菌产生的一种细菌毒素,它特异性地与质膜上的 GPI 锚定蛋白结合,形成跨膜孔,导致细胞在几个小时内死亡。利用这种独特的特性,proaerolysin 被广泛用于阵发性睡眠性血红蛋白尿症 (PNH) 的诊断测试,这是一种由 PIGA 基因体细胞突变引起的疾病,该基因参与 GPI 锚的生物合成。此外,proaerolysin 还可作为基因操作中的反选择剂。尽管之前已经报道过 proaerolysin 的细菌表达和纯化,但由于缺乏对蛋白质稳定性至关重要的内部二硫键,产量较低。在这里,我们证明使用 Shuffle E. coli 菌株(它促进细胞质中二硫键的形成)可显著提高 proaerolysin 的溶解度和正确折叠。我们实现了高产量的 proaerolysin,从 50 ml 细菌培养物中可获得约 3 mg,纯度超过 99%。通过在小鼠胚胎干细胞 (mESC) 中进行测试,证实了重组 proaerolysin 的功能性,表明这种高产量生产方法为广泛的生物技术应用提供了可靠且经济高效的功能性 proaerolysin 来源。
淡水信号小龙虾Pacifastacus leniusculus是一个完善的模型,用于研究无脊椎动物的免疫系统。在该物种中已经有许多重要的发现,以及与凝血反应,造血,预防烯氧化酶激活系统,甲壳动物免疫细胞的功能和病原体识别有关的其他发现。在本文中,对这项工作做出了少量贡献,重点是小龙虾细胞防御反应对真菌模式识别蛋白β-1,3, - 葡聚糖和对卵菌的反应,这是导致小龙虾ppague的病原体的类型。通过将血细胞中的蛋白质组学反应映射到β-1,3, - 葡萄糖,然后更详细地研究一些鉴定出的蛋白质,它使我们更接近了解这些动物如何在不依赖适应性免疫的而抗真菌感染的情况下防御真菌感染。在注射laminarin,beta-1,3,-lucan后进行了血细胞的蛋白质组学筛查,并与对盐水注入和未注射的对照的反应进行了比较。与两个对照组相比,三种蛋白质特异于椎板蛋白基:一种富含甘氨酸的肽,一种卡萨尔型蛋白酶抑制剂和一种推定的几丁质结合蛋白;以前尚未描述其中。其他三种蛋白质在盐水和拉米那林组中都上调:一种无脊椎动物型(I-type)溶菌酶,一个甲壳类和化妆店。详细研究了富含甘氨酸的肽和I型溶菌酶在免疫和伤害反应中的潜在功能。发现该肽在几个组织中表达,并且具有针对小龙虾病原体吞咽肌的特异性活性,对任何其他经过测试过的Oomycete,真菌或细菌没有影响。I-type溶菌酶(PL-丽丽)是穆拉米德酶缺乏的,因此可能不参与抗菌防御,能够破坏由小龙虾凝结蛋白和经云丘脑酶形成的凝块。该结果表明甲壳类动物中穆拉米酶缺陷型I-type溶菌酶可能有新功能。还进行了一项单细胞RNA测序研究,以研究Leniusculus假单胞菌中的血细胞和造血干细胞的类型,其结果表明颗粒,半颗粒,透明质酸,透明透明和造血细胞之间存在几种潜在的亚型。
亚洲海鲈(Lates Calcarifer)是一种具有高经济价值和优异肉质的重要海洋物种,由于高密度水产养殖中的疾病而遭受了巨大的损失。包括各种生物活性化合物在内的大型藻类,Gracilaria pygmaea可以作为水产养殖业的一种免疫刺激。这项研究旨在评估甲状腺脓肿的饮食鱼粉对免疫,肝抗氧化酶的活性,肠道组织,溶菌酶基因的活性和IGF-I基因活性在亚洲海洋鲈鱼中的影响(lates Calcarifer)。到这一末端,平均体重为28±0.5 g的120个人的亚洲鲈鱼被分为四种治疗和3个重复,并保存在12个储罐中(每300升储罐10鱼)。大豆粉和鱼粉的混合物用作对照饮食(C)。实验饮食准备在基础饮食中用3(GL3),6(GL6)和9%(GL9)的鱼粉代替鱼粉。鱼每天喂三次,持续六周。与对照组相比,甲状腺菌的饮食补充剂的总免疫球蛋白水平显着增加。将G. pygmaea纳入饮食中不会影响鱼的抗氧化状态。组织学分析表明,所有群体的鱼都表现出前肠和幽门肠的正常形态。获得的结果表明,与其他组相比,GL9和对照组的FISH和对照组的IGF-1 mRNA转录物丰度最高。两组之间注意到的溶菌酶表达的变化在统计学上微不足道。总体而言,这项研究中获得的结果表明,饮食中的pygmaea不会对亚洲海鲈中的免疫状况,抗氧化剂状态,肠形态和溶菌酶基因活性造成不利影响。
微孢子虫肠肠肝癌(EHP)是一种与真菌相关的,形成孢子的寄生虫。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。 对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。 在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。 然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。 在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。 击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。 我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。 r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。 有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。 与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。 我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。EHP感染会导致虾的生长迟缓和大小变化,从而导致严重的经济损失。对虾免疫反应的研究表明,在EHP感染后,几种抗微生物肽(AMP)上调。在那些高度高度的放大器中是C型溶菌酶(LV LYZ-C)。然而,负责虾中LV LYZ-C产生的免疫信号通路及其针对EHP感染的功能仍然很少了解。在这里,我们表征了主要的虾免疫信号通路路径,并发现在EHP感染后TOLL和JAK/STAT途径被上调。击倒JAK/STAT途径中的无效(圆顶)受体,导致LV LYZ-C显着降低,EHP拷贝数的升高。我们通过在大肠杆菌中异源表达重组LV LYZ-C(R LV Lyz-c)进一步阐明了LV LYZ-C的功能。r lv lyz-c表现出针对多种细菌的抗菌活性,例如枯草芽孢杆菌和弧菌副溶血性。有趣的是,我们发现R LV LYZ-C对白色念珠菌的抗真菌活性,这使我们进一步研究了R LV Lyz-C对EHP孢子的影响。与R lv lyz-c的EHP孢子一起孵育,然后再构成几丁质染色,表明信号以剂量依赖性的方式显着降低,这表明R LV LYZ-C可能会在EHP孢子上消化一件几丁蛋白。我们假设EHP内孢子的变薄会导致渗透率改变,从而影响孢子发芽。透射电子显微镜分析表明,主要由几丁质组成的内孢子层被R LV LYZ-C消化。最后,我们观察到用R LV LYZ-C处理的EHP孢子显示孢子发芽率显着降低。这项工作提供了对负责LV LYZ-C产生及其抗EHP特性的虾免疫信号通路的见解。这些知识将作为制定EHP控制策略的重要基础。
Dr. L. Muzi、C. Seifert、R. Soltani、Dr. C Ménard-Moyon、Dr. H. Dumortier、Dr. A Bianco CNRS、免疫学、免疫病理学和治疗化学、UPR3572、斯特拉斯堡大学、ISIS、67000 斯特拉斯堡、法国 电子邮件:a.bianco@ibmc-cnrs.unistra.fr 关键词:碳材料、超分子复合物、溶菌酶、B 细胞、癌症
溶解缓冲液MB1 2 ml 25 ml裂解缓冲液MB2 2 ml 30 ml W1缓冲液(浓缩物)* 1.3 ml 22 ml洗涤缓冲液(浓缩液)** 1 ml 15 ml 15 ml洗脱缓冲1 ml 8 ml 8 ml溶菌酶lysozyme lysozyme lysozyme▀3mg 36 mg 36 mg蛋白酶k(液体)contrion limits 100 µl = 4 ll×2 1050 µpt con管4 PCS 50 PCS用户手册1 1
近年来,已经研究了经常患病儿童的免疫学状况的特征。频繁和反复的呼吸道感染有助于身体的敏感,免疫反应性的降低,代偿性和适应性机制的破坏,有助于呼吸道的慢性炎症过程的发展,最终导致儿童的身体和神经学的影响[7,8]的细胞范围。大多数CBD揭示了血细胞。在免疫功能低下的儿童中,最常记录局部特异性和非特异性耐药性的变化(吞噬作用降低,补体水平,溶菌酶,分泌LGA2,LGA1,LGA1,IgM,IgG)
摘要:消费者比以往任何时候都更加了解药草、多酚、蘑菇、氨基酸、蛋白质和益生菌等功能性成分。与酸奶及其益生菌一样,L-谷氨酰胺、槲皮素、榆树皮、蜀葵根、N-乙酰-D-葡萄糖胺、甘草根、舞茸和乳清酸锌已通过肠道微生物群显示出对健康有益。这些成分对酸奶发酵剂细菌特性的影响尚不清楚。本研究的目的是确定这些成分对益生菌特性、对胃液和溶菌酶的耐受性、蛋白酶活性以及嗜热链球菌 STI-06 和保加利亚乳杆菌 LB-12 活力的影响。在培养 0、30、60、90 和 120 分钟时测定耐酸性,在培养 0、4 和 8 小时时分析耐胆汁性。在培养 0、2、4、6、8、10、12、14 和 16 小时时测定微生物生长,在培养 0、12 和 24 小时时评估蛋白酶活性。使用蜀葵根、甘草根和榆树皮可提高嗜热链球菌的耐胆汁性和耐酸性。这些成分对保加利亚乳杆菌在培养 8 小时和 120 分钟时(分别)的耐胆汁性、耐酸性和模拟胃液性特征没有影响。同样,嗜热链球菌和保加利亚乳杆菌的生长不受这些功能成分的影响。使用蜀葵根、N-乙酰-D-葡萄糖胺和舞茸可显著提高嗜热链球菌的蛋白酶活性,而保加利亚乳杆菌的蛋白酶活性不受任何成分的影响。与对照相比,蜀葵根和槲皮素样品在模拟胃液和溶菌酶体外抗性试验中分别具有更高的嗜热链球菌平均对数计数和对数计数。对于保加利亚乳杆菌,甘草根、槲皮素、蜀葵根和榆树皮样品的对数计数高于对照样品。
写道:“在肠道前,一项研究表明,唾液和中肠分泌物中的消化酶不仅提供糖和氨基酸作为居民微生物群的底物,而且还提供了消化生物量。”这意味着宿主(或前肢中的少数微生物,见下文)可能会产生内源性酶以降解聚合物。这是正确的吗?第1.6.1节还问为什么微生物如此糟糕地殖民了千足派的前肢?这是否表明动物编码这些提到的活动,或者表明前肢降解木质纤维素中相对较少的微生物?论文1中提出的遗传能力也是间接证据。因此,千足虫无法消化的木质纤维素的证据尚无定论。19。溶菌酶活动呢?为了访问微生物/真菌生物量,宿主除了上述糖苷水解酶外,可能还需要上调这些酶。