纳米技术通过控制纳米级级别的材料来刺激医疗和医疗保健疗法和疗法的巨大创新。它处理的是纳米化实体的制备通常从1到100 nm,与散装材料相比,它们具有独特的物理化学特性,可以在多种生物医学应用中实施。因此,纳米技术正在引起人们对实现个性化医学的限制以克服当前疗法的局限性的关注。的确,尽管药物输送仍然是医学科学的不断进步,但仍然代表着至关重要的挑战[1]。通过非病毒纳米传输器(NVS)递送药物,具有几种优势,例如可以自定义药物释放,溶解度,半衰期,生物利用度和免疫原性的可能性。已证明使用纳米载体,例如脂质体,胶束和纳米颗粒[2,3]可以提高药物的溶解度,并防止血液循环过程中酶,pH和其他因素降解(表1)。此外,NVS的可调节尺寸,形状和结构使它们能够达到相关的药物载荷能力。此外,它们的大小与人类细胞细胞器相当,它们可以与各种配体相互作用,包括亲水性和疏水性,靶细胞和细胞内室。毫无疑问,将治疗剂直接递送到目标是一个挑战,这对于增加其效率的同时减少副作用很重要[4,5]。调用化学治疗药具有多种常见的局限性,例如:(i)由于其疏水性而导致水中的低溶解度,(ii)缺乏癌细胞的选择性以及(iii)产生多药耐药性的潜力;例如,某些药物可以增加心肌梗塞,心脏病发作,中风和血块的风险[6]。
我们的solupotasse®是为在开放田和温室中的施肥而开发的(因为它具有非常低的重金属和不溶性材料的水平,并且具有高溶解度,迅速而完全溶解),以帮助增强营养利用效率(精确农业)和较低的水消耗。
这项研究工作旨在开发简单,准确,精确的分析方法,以同时估算盐酸普萘洛尔和盐酸胺碘酮,用于治疗心血管疾病。为估计建立了紫外可见分光光度计方法。盐酸盐盐酸盐在甲醇中显示出更好的溶解度,盐酸普萘洛尔盐酸盐的溶解度会增加。紫外可见分光光度计方法的线性在16-24 µg/ml的范围内,丙酮的含量为4 -8µg/ml。λmax分别为288 nm和242nm。普萘洛尔和胺碘酮的回收率分别为100%和98.6%。发现普萘洛尔的相关系数为0.998,胺碘酮为0.999。紫外可见的光谱法是快速,成本效益,更精确和准确的。此方法可以很有用,因为没有开发用于丙诺酚和胺碘酮的分析方法。
ROTAC(蛋白水解靶向嵌合体),以下通常称为降解剂,是一种异双功能分子,能够诱导 E3 连接酶介导的泛素化并随后降解目标蛋白(目的蛋白或 POI)。其非常规的催化作用方式和相关优势使 PROTAC 成为一种新的治疗方式,引起了人们对药物发现的极大兴趣。1、2 PROTAC 除了能够靶向耐药癌症形式外,还具有针对无法用药的靶标的潜力,例如通常参与蛋白质-蛋白质相互作用 (PPI) 的浅表面蛋白质,甚至支架蛋白,3、4 引起了制药/生物技术行业和学术界的兴趣。5、6 值得注意的是,PROTAC 具有大而灵活的结构,这在同时优化溶解度和细胞通透性方面带来了显著的挑战。具体而言,通过增强亲脂性来追求增加渗透性可能会导致溶解度和代谢稳定性降低。7、8
1。引言地球的人口每天都在增加,并且迅速接近90亿人。因此,该人群的食品供应要求将增加。因此,有必要使用化学肥料来提供植物所需的元素,以使植物更快,更好地生长[1]。氮,磷和钾是必不可少的元素[2,3]。使用化学肥料(例如尿素肥料(氮)在土壤和水性环境中的尿素肥料(46.6%),由于肥料的高溶解度,可能会引起问题[4-6]。这些肥料的营养因其高溶解度而丢失,并以不同的方式浪费(浸出,蒸发,氧化和还原,硝化,硝化,硝化)[7-9]。这会导致频繁的施肥,除了对环境造成的严重且无法弥补的损害外,这将是昂贵的。在这些问题中,可以提及水和土壤污染,硬化,盐水,土壤结构的损失,低质量和不健康的产物的产生以及用硝酸盐和硝酸盐污染地面和地下水的污染[10-
鬼臼毒素 (PPT) 是一种从鬼臼属植物中分离出来的芳基四氢萘型木脂素,具有广泛的生物和药理活性,在临床应用中主要用作抗病毒剂或抗肿瘤药物。然而,由于 PPT 具有有害的全身毒性、溶解度差和生物利用度低,其治疗潜力受到阻碍。纳米粒子通过增强渗透性和滞留效应优先在肿瘤中积累,已成为靶向药物输送的有用工具,从而在癌症治疗中占据一席之地。纳米药物输送平台已被引入 PPT 输送,目的是提高溶解度、增强疗效和降低毒性。几十年来,人们一直致力于设计和开发各种 PPT 输送系统,以减轻不良毒性并扩大临床适用性。在此,我们简要回顾了 PPT 输送模式和药效学问题的最新成果,以期为 PPT 的未来研究和潜在应用提供启示。
1毒性研究2。代谢性疾病3。Alzheimer/神经系统疾病2。 div>Jagannath Sahoo博士新颖的药物输送系统,溶解度增强,配方开发,纳米颗粒,透皮药物输送系统,透射药物输送系统,鼻内药物输送系统,稳定性研究。3。Yogesh Kulkarni博士的草药药理学,重点是糖尿病,糖尿病并发症和神经退行性疾病,天然产物的毒性,草药药物的毒性,草药的标准化4.Ashwini Deshpande博士剂型设计和新型药物输送系统。5。Shyam Pancholi博士的分析分析,降解分析,杂质分析,QBD方法,化妆品,营养和草药配方设计,溶解度增强,药物靶向和调节性方面优质药物,设备,诊断和生物学的方面。6。Suvakanta Dash博士生物粘附的新型药物输送,生物增强研究,新型Phtopharmaceuticals和刺激敏感药物输送系统的递送。7。Sateesh B.糖尿病博士,炎症和毒性研究。8。Vaishali Londhe博士新颖的药物输送系统,例如纳米颗粒,脂质体,微针,溶解度增强方法,例如固体分散剂,包含络合,SMEDDS,SMEDDS,COCRYSTALS,改善生物利用度,改性的口服递送,例如ODT,ODT,口服果冻>使用实验设计(DOE),透皮药物递送,分析/生物分析方法的开发和验证,杂质分析,草药配方发育。9。10。11。Dr. Pravin Shende Biosensors, nanosponges, nanobubbles, nanoflowers, microneedles, Resealed erythrocytes, Biocarrier Drug Delivery, DoE-based formulations, Liposomes, Dendrimers, Solid-lipid Nanoparticles, Polymeric Nanoparticles, Carbon NP, magnetic NP, nanocrystals, Targeted, Transdermal,颊,肺和脉动药物输送系统,用于改善溶解度和生物利用度的融合络合,常规剂型的预构和稳定性研究。Khushwant Yadav纳米医学博士,药物输送,抗癌药物的制剂开发,青光眼的新型递送系统,神经退行性疾病,微粒,基于聚合物的动力学。Sanjay Sharma博士分析和生物酰基方法的开发和验证,杂质概况,天然产品,药物调节案件(DRA),知识产权权利(IPR),失败调查和合规性,包括药品CAPA。
需要识别的材料示例包括小苏打和其他粉末、金属、矿物或液体。属性示例包括颜色、硬度、反射率、电导率、热导率、对磁力的响应或溶解度;密度不作为可识别属性。本文不试图定义看不见的粒子或解释蒸发和凝结的原子级机制。