这款新型双相(水油)卸妆油专为浓妆和眼唇部位而设计,是一款一步到位的清洁剂,质地极其轻盈,在干湿面部均具有出色的清洁性能。Schercemol™* DIS 酯类提供轻盈柔软的肤感,同时与多种润肤剂和紫外线过滤剂具有高度兼容性,具有超强的溶解性和分散性,适用于多种化妆品和防晒霜。SilSense™* Bio 5 润肤剂具有快速铺展性和轻盈干燥的感觉,具有良好的色素分散性,有助于实现强大的卸妆功效,而不会留下油腻感。Chemonic™* LI-7 表面活性剂可增强乳化作用,并在卸妆液中提供润肤性,使其更容易冲洗掉,同时带来舒适的感觉。无需二次清洁,即可享受愉悦的“卸妆”体验。
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。
斑块上存在带有银色白色鳞片的斑块和双侧四肢(图1)。歧义和奥斯皮茨符号为正。在先前的牛皮癣部位存在多种具有正常感觉的毛细血管。计算的PASI为11.2。指甲显示出点斑,脊和局灶性溶解性。斑点的低血压在手的内侧和腿部下半部都存在。右尺神经,常见的孔膜神经和左孔神经被增厚。卡片测试在双手的第三和第四个网络空间中为正。缝皮肤涂片为负。活检中的活检和低疫苗区域表现出正常的组织病理学。斑块中的活检显示了牛皮癣的特征(图2)。左旋神经活检发送用于组织病理学
多年来,人们对 FOX-7 的衍生物进行了多次成功的尝试。5 一个有趣的例子是 FOX-7 与肼进行亲核取代反应生成 1-氨基-1-肼基-2,2-二硝基乙烯 (HFOX,1)。它是一种结构特征与 FOX-7 相似的坚固高性能爆炸中间体。由于 1 中氨基和肼官能团相邻,因此它反应性极高,或会自发分解,或极其危险。6 FOX-7 和 1 这两种化合物在常见有机溶剂中的溶解性较差。它们本质上是两性的,表现出多种互变异构体和共振结构,可以与碱或酸反应。7,8 例如,HFOX 与酸和碱反应时可以相应地形成质子化 (i) 和阴离子 (ii) 形式(图 1)。 7 这两种离子形式都是高反应性的中间体,与羰基化合物反应后可产生稳定的产物。然而,关于这些共振形式的选择性的研究有限,仅用于高性能材料的构建。9–11
使用多二甲基硅氧烷(PDMS)膜的透白化膜工艺将甲基乙基酮(MEK)从水中分离出来的实验研究。最初,使用汉森溶解性参数选择了几种聚合物,最终选择了聚二甲基硅氧烷。在这项研究中,使用了类似于聚二甲基硅氧烷的结构(商业上称为Silgard 184)的结构。通过分析(例如FTIR,NMR,SEM和水接触角度测量)来证实这一点,但是Elastosil®RT601 A/B的使用率为Silgard 184的三分之一。饲料是高度不理想的,并包含异质性的共同体。在200 MBAR的真空压力下,以浓度(5-15 wt%)和温度(40 - 60°C)进行了渗透实验。在40°C下为5 wt%的进料,总通量为1.0208 kg/m²·H,选择性为33。还评估了操作参数(例如进料浓度和温度)对选择性和通量的两个因素的影响。1-介绍
摘要:本报告描述了非水性氧化还原流量电池的二氨基丙烷 - 苯噻硫氨酸杂化天主分解器的开发。分子是通过添加二氨基丙烷(DAC)取代基于苯噻嗪的氮,以快速和模块化的方式合成。将多功能的C – N耦合方案(可提供对不同衍生物的访问)与计算和结构 - 培训分析允许鉴定CATALYTE,该识别在0.64和1.00 V VS FC /FC +的电位上显示稳定的两电动循环,以及所有氧化液的溶解性以及所有氧化液(均为MIMM5M5 m5 m5 m)。该天主教徒被部署在高能量密度的两电子RFB中,在266小时的流细胞循环中以> 0.5 m的电子浓度表现出> 90%的容量保留。
2001年Crews首次提出利用细胞内固有蛋白质降解机制(泛素-蛋白酶体系统)消除致病蛋白的概念,即蛋白水解靶向嵌合体(PROTACs)[1]。2017年以来PROTAC技术进入加速发展期[2]。根据PROTAC-DB [3] 的不完全统计,目前共有5388个PROTAC分子,其中26个PROTAC分子已进入临床试验,涉及实体瘤、血液系统癌症、自身免疫性疾病等适应症(图1)[4-6]。在过去的20年里,研究人员认识到PROTAC技术的巨大潜力,并明确了其局限性,例如溶解性和生物利用度差、对健康组织有潜在毒性(靶向和脱肿瘤毒性)[7,8]。因此,目前的前沿研究主要集中于解决PROTAC的缺点,并通过其他技术手段提高药物的可利用性,如纳米材料技术[9-11]和前体药物策略[12-14]。PROTAC技术对药物治疗产生了革命性的影响,为研究提供了新的工具
基因治疗的概念最初是在 20 世纪 60 年代提出的。自 20 世纪 90 年代初以来,已进行了 1900 多项治疗遗传疾病的临床试验,主要使用病毒载体。尽管也已实施了多种治疗恶性胶质瘤的方法,但很难靶向侵袭性胶质瘤细胞。为了克服这个问题,永生化神经干细胞 (NSC) 和非溶解性、双嗜性逆转录病毒复制载体 (RRV) 已引起人们对向侵袭性胶质瘤传递基因的关注。最近,针对位点特异性插入的基因组编辑技术取得了进展;特别是,已开发出成簇的规律间隔回文重复序列/CRISPR 相关-9 (CRISPR/Cas9)。自 2015 年以来,已使用基因组编辑技术进行了 30 多项临床试验,结果显示该技术有可能实现积极的患者结果。利用 CRISPR 技术治疗多种疾病的基因疗法有望在未来不断取得进展。
青蒿素及其衍生物在体内和体外均表现出广谱抗肿瘤活性。此外,有限数量临床试验的结果为其优异的抗肿瘤活性提供了令人鼓舞的证据。然而,溶解性差、毒性和有争议的作用机制等问题阻碍了它们作为有效的抗肿瘤药物在临床上的应用。为了加速 ART 在临床上的应用,研究人员最近开发了新的治疗方法,包括开发新型衍生物、制造新型纳米制剂以及将 ART 与其他药物相结合用于癌症治疗。并探索了相关的作用机制。本综述介绍了用于诱导非凋亡细胞死亡的 ART,包括胀亡、自噬和铁死亡。此外,它强调了 ART 对癌症代谢、免疫抑制和癌症干细胞的影响,并讨论了用于治疗癌症的 ART 的临床试验。本综述对 ART 的分子作用机制及其巨大的临床潜力提供了进一步的见解。
a。新兴电子技术主席,德累斯顿技术大学,NöthnitzerStr。61,01187德累斯顿,德国b。 Leibniz固态与材料研究所Dresden,Helmholtzstraße20,01069德累斯顿,德国c。德累斯顿技术大学德累斯顿推进电子中心,Helmholtz Str。18,01069,德累斯顿,德国 *电子邮件:yana.vaynzof@tu-dresden.de使用溶剂工程方法制造金属卤化物钙钛矿膜的制造越来越普遍。在这种方法中,钙钛矿层的结晶是通过在钙钛矿前体溶液旋转过程中施加反溶剂的。在此,我们介绍了对溶剂工程形成的钙钛矿层结晶过程的当前理解状态,尤其是针对抗溶性特性和溶剂 - 抗溶剂的相互作用的作用。通过考虑汉森溶解性参数的影响,我们提出了针对通过这种方法选择适当的反溶剂和轮廓开放问题和未来研究方向的指南。