细胞外基质的宏观丧失会导致皮肤伤口愈合的慢性缺陷,但是细胞外基质的补充有望促进伤口闭合,尤其是在糖尿病伤口愈合中。最近我们表明,细胞外基质蛋白聚糖蛋白通过改善迁移角质形成细胞的机械手术来加速皮肤伤口愈合,并允许它们通过基质金属蛋白酶12(MMP12)通过基质金属蛋白酶12(MMP12)对质量响应。RNA - 序列分析表明,除了杂乱无章的细胞外基质外,阿格林耗尽的皮肤细胞还损害了YAP/TAZ转录结果,导致我们假设YAP/TAZ作为中央机械传感器,作为中央机械传感器,驱动Agrin E MMP12信号在切素性伤口修复过程中的功能。在这项研究中,我们证明了Agrin在角膜细胞迁移期间在体外和体内受伤后激活YAP/ TAZ。从机械上讲,YAP/TAZ在通过正反馈受伤后迁移过程中持续agrin和MMP12蛋白表达。yap/taz沉默废除了agrin e mmp12 e介导的力识别和几何约束。重要的是,通过参与MMP12 E YAP,溶解性Agrin治疗可加速糖尿病小鼠模型中的伤口闭合。由于糖尿病足溃疡和伤口愈合受损的患者与与YAP/TAZ失活有关的Agrin E MMP12的表达降低,因此我们建议通过可溶性的Agrin治疗及时激活YAP/TAZ,可以使机械生物学的微观环境使机械生物学微环境促进伤口的机械性微环境,并有效地治愈了正常情况和抑郁症。
腐蚀会带来严重的安全问题,环境问题和经济损失。使用腐蚀抑制剂是控制金属腐蚀的重要技术。与小分子腐蚀抑制剂相比,聚合物腐蚀抑制剂具有更好的膜形成能力,多功能性,粘度,高温抗性,溶解性柔韧性和更多的附着位点,使其成为腐蚀抑制剂未来发展的热点之一。在这里,我们回顾了天然聚合物,聚合物表面活性剂,聚合物离子液体,基于β-果仁糖基蛋白的聚合物和聚合物纳米复合材料作为腐蚀抑制剂的研究进度。这些类型的聚合物腐蚀抑制剂不需要高分子量来实现其所需功能,并表现出出色的腐蚀抑制性能。但是,从当前的应用情况下,聚合物腐蚀抑制剂仍然存在一些缺点。例如,尽管天然聚合物修饰的聚合物不会污染环境,但它们的提取和分离操作很麻烦,并且很难准确地分析聚合物腐蚀抑制剂的活性成分。化学合成的聚合物腐蚀抑制剂仍然对环境构成威胁,不利于生态保护。在这里,我们回顾了聚合物腐蚀抑制剂的科学研究,并讨论了使它们实用的工业腐蚀抑制剂的解决方案。我们旨在提出广泛的应用前景和开发潜力,这是工业中聚合物腐蚀抑制剂的。主要点是:1)是否可以将具有良好腐蚀性性能的物质移植到聚合物上已成为准备高效可溶的聚合物腐蚀抑制剂的关键点; 2)从材料来源,溶解度,剂量和组成的角度研究和优化聚合物合成过程或自然聚合物的提取方法; 3)开发廉价,高效和环保的聚合物腐蚀抑制剂,以促进其实际的工业应用。
摘要:本文综述了有关聚合物在人行道和岩土工程中使用土壤稳定的研究。首先,讨论了影响广泛使用聚合物类别的有效性的特性,包括地球聚合物,生物聚合物和合成有机聚合物。这些包括地球聚合物的前体和活化剂,分子量,粒径,电荷,构象,溶解性,粘度,pH和有机聚合物的水分行为的类型和比率。接下来,本文审查了使用各种聚合物类别的土壤稳定的机制。有机聚合物 - 粘合相互作用的关键机制是静电力和熵的增加,这取决于聚合物是阳离子,中性还是阴离子的不同。另一方面,聚合物与主要由沙子组成的粗粒土壤之间的相互作用主要归因于三种类型的结构变化:覆盖砂颗粒的薄膜,连接了无接触的相邻颗粒的聚合物扎带的形成以及颗粒之间粘附的发展。地球聚合物稳定的机制是通过形成钠和/或钙铝硅酸盐凝胶的形成,该氧化物结合周围的土壤颗粒并将其变成更密集,更牢固的基质。讨论了使用聚合物稳定后土壤类型的工程特性,包括强度提高,渗透率降低,膨胀和收缩抑制以及耐用性和稳定性增强。最后,本文强调了更广泛使用土壤聚合物稳定的挑战,包括有限的评估标准,生命周期成本考虑和水分敏感性。为此,建议对土壤稳定中广泛使用聚合物的一些未来研究方向,包括建立标准测试方案的需要,评估聚合物稳定土壤的原位特性,解决耐用性问题的解决方案以及进一步研究稳定机制的进一步检查。
单元-1基本的化学基础 - 环境工程化学,通用化学概念,氧化和还原方程的概念,平衡,le-chatleir原理,活性和活性同时,水的离子乘积,酸和碱的考虑,溶解性产物。物理化学 - 渗透,透析,电导率,化学动力学,吸附。re元化学 - 酸和碱,滴定,缓冲液。有机化学 - 碳氢化合物,酒精,洗涤剂,农药,肥皂,痕量有机物。单元-2定量化学作业,采样,实验室,洗涤剂,降水,过滤,点火,干燥,分析平衡,重量分析,钙化分析,体积分析。单元 - 3种仪器分析方法 - 简介光学方法 - 吸收方法,弹射,分散,散射。电气方法 - 电位计分析,电极,光学分析。色谱方法 - 气相色谱,HPLC,离子色谱法。其他仪器方法 - 质谱,X射线分析,NMRSpectRoscopy单元 - 4个物理特征的测定 - 浊度,电导率,颜色,气味。化学特征 - 硬度,氟含量的残留含量,酸度,碱度,pH,可固定固体,悬浮固体,溶解的固体,硫酸盐氯化物。单位 - 5细菌性特征的损坏-NPN,E-碰撞,现场访问水处理计划,有机参数,DO,BOD,COD,TKN(总Kjeldal No.),速率动力学一直持续到上述反应。参考文献1。Sawyer,C.N.,McCarty,P.L。Sawyer,C.N.,McCarty,P.L。和G.F. Parkin “环境工程与科学化学,第5版,麦格劳 - 希尔书公司,2553 2。 生物化学的轮廓-CONN和Stump 3。 微生物学-Pelzar和Reid 4。 卫生工程师的微生物学-Ray Makinney和G.F. Parkin “环境工程与科学化学,第5版,麦格劳 - 希尔书公司,2553 2。生物化学的轮廓-CONN和Stump 3。微生物学-Pelzar和Reid 4。卫生工程师的微生物学-Ray Makinney
Zearalenone(ZEN)是一种由几种在谷物和农产品中发现的镰刀菌产生的非甾体雌激素霉菌毒素。Zen与农场动物和人类的霉菌毒性有关。ZEN的毒性作用众所周知,但是尚未确定碱性彗星测定法评估Zen诱导的Chang肝细胞中氧化DNA损伤的能力。这项研究的第一个目的是评估彗星测定法测定Zen Toxin诱导的细胞毒性和DNA大坝的程度,第二个目的是研究N-乙酰半胱氨酸酰胺(NACA)保护细胞以保护细胞免受Zen诱导的毒性的能力。在彗星测定中,通过量化尾部范围矩(TEM;任意单位)和尾部长度(TL;任意单位)来评估DNA损伤,这些损伤用作SCGE中DNA链断裂的指标。通过抑制细胞增殖并诱导氧化DNA损伤,介导Zen在变肝细胞中的细胞毒性作用。增加ZEN的集中度增加了DNA损伤的程度。用Zen毒素治疗后,DNA迁移的程度和尾部的细胞百分比显着增加(P <0.05)。与高浓度的Zen毒素(250 p m)的细胞治疗相比,用低浓度的Zen毒素(25 p m)处理Zen毒素(25 p m)的治疗诱导的DNA损伤水平相对较低。氧化DNA损伤似乎是Chang肝细胞中Zen诱导的毒性的关键决定因素。在暴露于任何浓度的ZEN之前先用NACA预先处理细胞时,观察到细胞溶解性的显着降低和氧化DNA损伤。我们的数据表明ZEN在Chang肝细胞中诱导DNA损伤,NACA的抗氧化活性可能有助于通过消除氧化应激减少Zen诱导的DNA损伤和细胞毒性。
胰腺导管腺癌是最常见的胰腺癌,被认为是全球重大健康问题。化疗和手术是目前胰腺癌治疗的主要手段;然而,只有少数病例适合手术,大多数病例会经历复发。与 DNA 或肽疫苗相比,胰腺癌的 mRNA 疫苗更有前景,因为它们具有递送、增强免疫反应和降低突变倾向性等优点。我们通过分析 S100 家族蛋白构建了一种 mRNA 疫苗,S100 家族蛋白都是晚期糖基化终产物受体的主要激活剂。我们应用了免疫信息学方法,包括物理化学性质分析、结构预测和验证、分子对接研究、电子克隆和免疫模拟。设计的 mRNA 疫苗的分子量估计为 165023.50 Da 且溶解性高度良好(平均亲水性为 -0.440)。在结构评估中,该疫苗似乎是一种稳定且功能良好的蛋白质(Z 得分为 -8.94)。此外,对接分析表明该疫苗对 TLR-2 和 TLR-4 受体具有高亲和力。此外,“疫苗—TLR-2”(-141.07 kcal/mol)和“疫苗—TLR-4”(-271.72 kcal/mol)复合物的广义 Born 和表面积溶剂化分析的分子力学也表明对受体具有很强的结合亲和力。密码子优化也提供了高表达水平,GC 含量为 47.04%,密码子适应指数得分为 1.0。一段时间内还观察到记忆 B 细胞和 T 细胞的出现,辅助 T 细胞和免疫球蛋白(IgM 和 IgG)水平增加。此外,预测mRNA疫苗的最小自由能为-1760.00 kcal/mol,表明疫苗进入细胞、转录和表达后具有良好的稳定性。该假想疫苗为未来胰腺癌的研究和治疗开发提供了开创性的工具。
摘要 牛皮癣是一种可在任何年龄发生的慢性疾病。这种疾病与影响全世界所有人的炎症问题有关。由于年龄、性别、地理位置、种族、遗传和环境因素等多种因素,牛皮癣在斯堪的纳维亚人中比在亚洲和非洲人群中更常见。免疫刺激、遗传因素、抗菌肽和其他重要诱因(如药物、免疫接种、感染、创伤、压力、肥胖、饮酒、吸烟、空气污染、日晒和特定疾病)会导致牛皮癣。目前正在进行大量临床研究,并且有可用的治疗替代方案。然而,这些疗法只能改善症状,不能完全治愈;它们还具有危险和不良的副作用。天然产品最近因其有效性、安全性和低毒性而广受欢迎。各种纳米载体的天然制剂,如脂质体、脂质球、纳米凝胶、乳化凝胶、纳米结构脂质载体、纳米海绵、纳米纤维、脂质体、纳米微凝胶、纳米乳剂、纳米球、立方体、微针、纳米胶束、醇质体、纳米晶体和泡沫,对银屑病治疗做出了重大贡献并促进了银屑病治疗的发展。这些含有植物化学物质的新型纳米制剂解决了传统剂型中天然产物的几个问题,例如不稳定性、溶解性差和生物利用度有限。本文回顾了一些有趣的植物化学物质,以及它们可能的分子靶位和作用机制,这可能有助于开发更具体、更有选择性的抗银屑病药物。探索和了解植物化学物质的功能将有助于开发更多针对特定部位的银屑病治疗技术。本综述总结了使用载有植物成分的草药或多种草药纳米载体治疗牛皮癣疾病及其机制方法。
本评论文章提供了利用非富勒烯受体(NFAS)的有机太阳能电池(OSC)的摘要,重点是二基吡咯吡咯(DPP),萘二酰亚胺(NDI)和二二酰亚胺 - 二酰亚胺(PDI)以及挑战。它强调了PDI,NDI和DPP的表征,尤其是它们的光学,结构和热性能。本文研究了取代基对NFA的分子和电子特性的影响,包括它们对光学,电,溶解性和分子间相互作用特性的影响。在提高NFA在有机半导体开关中的效率方面的进展,功率转换效率超过13%。还考虑了该领域进步的未来前景。该研究探讨了各种取代基对NDI衍生物(如五氟苯基,二苯基甲基甲基,2-硝基苯基,IPRP-NDI,DPM-NDI,dPM-NDI,NO2-NDI)等NDI衍生物的分子结构,光伏性能的影响。这些取代基会影响NDI衍生物的电导率,电子迁移率,氧化还原活性和聚集行为。评论强调了调整NFA中分子和电子特性的重要性,重点是PDI及其衍生物的核心结构。在各种位置(包括海湾和酰亚胺位点)的不同取代基会影响溶解度,聚集趋势,能级,电荷转移和分子堆积。基于DPP的NFA的光伏特性突出显示,达到了高达13%的功率转换效率。提供了详细说明各种DPP衍生物的表,展示了它们独特的吸收特性,PCE和电子迁移率。Hammett的研究被提及证明了电子撤回组对光伏效率的有利影响。本文还讨论了优化固态超分子相互作用中电荷转运和分子形状的重要性。BT与NFA的融合在减少带隙和增强分子内电荷转移方面的潜力进行了检查,从而改善了光伏性能。对这些衍生物的有条理研究被提倡以推进分子体系结构。
摘要 背景 抗体-药物偶联物 (ADC) 是治疗实体瘤和血液系统癌症的重要治疗选择。抗表皮生长因子受体 (EGFR) 抗体西妥昔单抗 (Cet) 用于治疗结直肠癌 (CRC)。通过用氨基双膦酸盐唑来膦酸 (ZA) 引发肿瘤细胞,然后通过丁酸嗜蛋白 (BTN) 家族成员(如 BTN3A1 和 BTN2A1)呈递异戊烯基焦磷酸,可引发抗 CRC V δ 2 细胞溶解性 T 淋巴细胞。阻碍 ZA 靶向 CRC 的一个主要缺点是氨基双膦酸盐的骨向性。方法 将 DNA 的磷酸基团标记到蛋白质的氨基上后,在咪唑存在下将 ZA 的磷酸基团与 Cet 的游离氨基连接起来。通过基质辅助激光解吸电离质谱和电感耦合等离子体质谱分析确认了 Cet-ZA ADC 的生成。在 Geltrex 圆顶盒中用化学定义的无血清培养基获得了 13 个 CRC 类器官。通过流式细胞术、结晶紫和细胞毒性探针测定以及图像分析检测 V δ 2 T 细胞对 CRC 类器官的增殖和细胞溶解活性激活。通过自动免疫染色、全玻片扫描和数字病理成像的计算机化分析进行免疫组织化学和定量 BTN3A1 或 BTN2A1 表达以及 CRC 中肿瘤浸润的 V δ 2 T 细胞数量。结果新型 ADC Cet-ZA 的生成率为 4.3,并显示出与未偶联抗体相似的反应性。更重要的是,患者来源的 CRC 类器官或 CRC 肿瘤细胞悬浮液在用 Cet-ZA 引发时可触发外周血和肿瘤浸润淋巴细胞中 V δ 2 T 细胞的扩增。此外,Cet-ZA 触发 V δ 2 T 细胞介导的 CRC 类器官杀伤。不仅在 CRC 类器官中检测到了 BTN3A1 和 BTN2A1 的表达,而且在 CRC 标本中也检测到了相当数量的肿瘤浸润 V δ 2 T 细胞。结论这些发现证明了 Cet-ZA ADC 可用于特异性靶向 CRC 类器官,并可能提出一种将氨基双膦酸盐递送至 EGFR + 实体瘤的新实验方法。
摘要肺癌的发生依赖于细胞内的半胱氨酸来克服氧化应激。包括非小细胞肺癌 (NSCLC) 在内的几种肿瘤类型通过过表达胱氨酸转运蛋白 SLC7A11 上调 xc - 胱氨酸/谷氨酸反向转运蛋白 (xCT) 系统,从而维持细胞内半胱氨酸水平以支持谷胱甘肽合成。核因子红细胞 2 相关因子 2 (NRF2) 通过调节 SLC7A11 充当氧化应激抵抗的主要调节器,而 Kelch 样 ECH 相关蛋白 (KEAP1) 充当氧化反应转录因子 NRF2 的细胞质抑制因子。KEAP1/NRF2 和 p53 的突变会诱导 NSCLC 中的 SLC7A11 激活。细胞外胱氨酸对于提供对抗氧化应激所需的细胞内半胱氨酸水平至关重要。胱氨酸可用性中断会导致铁依赖性脂质过氧化,从而导致一种称为铁死亡的细胞死亡。xCT 的药理抑制剂(SLC7A11 或 GPX4)会诱导 NSCLC 细胞和其他肿瘤类型的铁死亡。当胱氨酸摄取受损时,细胞内的半胱氨酸池可以通过转硫途径维持,该途径由胱硫醚-B-合酶 (CBS) 和胱硫醚 g-裂解酶 (CSE) 催化。外源性半胱氨酸/胱氨酸和转硫途径参与半胱氨酸池和下游代谢物会导致 CD8 + T 细胞功能受损和免疫疗法逃避,从而削弱免疫反应并可能降低免疫治疗干预的有效性。细胞焦亡是一种以前未被认识的受调节细胞死亡形式。在由 EGFR、ALK 或 KRAS 驱动的 NSCLC 中,选择性抑制剂可诱导细胞焦亡和凋亡。靶向治疗后,线粒体内在凋亡途径被激活,从而导致 caspase-3 的裂解和活化。因此,gasdermin E 被激活,从而导致细胞质膜通透化和细胞溶解性焦亡(以特征性细胞膜膨胀为标志)。本文还讨论了 KRAS G12C 等位基因特异性抑制剂的突破和潜在的耐药机制。关键词溶质载体家族 7 成员 11 (SLC7A11);核因子红细胞 2 相关因子 2 (NRF2);铁死亡;焦亡;KRAS G12C 等位基因特异性抑制剂;非小细胞肺癌 (NSCLC)