生物废水处理是一种消除碳,氮和磷引起的污染的过程。为此,有氧微生物必须具有足够量的氧气,以免减慢这一过程。因此,这项研究评估了溶解的氧浓度和时间对废水样品中微生物生长速率的影响。为此,使用有氧微生物的混合培养物,同等浓度为SSV = 150 mg/L,溶解的氧气水平为2、3、4 ppm,观察时间为5天,浓度为5天,等于800 ppm。确定微生物的生长对细胞合成阶段有反应,并且根据溶解的氧气水平(2、3和4 ppm),它从150 mg/L增加到386.9、412.07和423.7 mg/L。另一方面,随着治疗时间的经过,微生物生长的速率降低了,尽管事实上溶解氧浓度的作用的重要性可以忽略不计。最后,时间和两个变量的相互作用都是相关的。
石墨烯是一种二维的基于碳的光催化剂,显示出很大的希望。这项研究使用氧化石墨烯(GO)与传统的水处理程序,例如离子交换和吸附进行了比较新有机染料甲基蓝(MB)的光催化降解。在这项研究中,通过在水溶液中的光降解甲基蓝(MB)评估了GO和过氧化氢(H 2 O 2)的光催化活性。使用X射线粉末衍射(XRD),扫描电子显微镜(SEM),能量色散光谱(EDX)和傅立叶变换红外射线光谱(FTIR)检查所得的GO纳米颗粒。XRD数据验证了以2θ≈10.44°为中心的强峰,对应于GO的(002)反射。我们的研究发现,纳米颗粒和H 2 O 2在自然阳光照射下在60分钟内的pH〜7时,H 2 O 2的h 2 O 2达到了〜92%的照片脱色。此外,还研究了溶解氧(DOC)和H 2 O 2对MB降解的影响。实验结果表明,氧是增强光催化降解的决定性因素。直接光催化(MB/GO)和H 2 O 2辅助光催化(MB/H 2 O 2/GO)导致DOC 3.5 mgl -1的降解速率常数(K1)从0.019增加到0.019升至0.019升至0.042 min -1。在这种情况下,H 2 O 2充当电子和羟基自由基(•OH)清除剂;但是,添加H 2 O 2应达到正确的剂量,以增加MB分解。将初始DOC含量从2.8增加到3.9 mgl -1导致降解速率常数(K1)从0.035增加到0.062 min -1。对直接和H 2 O 2辅助光催化的光降解机理和动力学进行了研究。
叶绿素:叶绿素是一种光合色素,存在于几乎所有植物和浮游植物中。通过测量水样中叶绿素“a”的含量,可以确定水中的藻类数量。与叶绿素 a 一起测量的其他光合色素还有叶绿素 b、叶绿素 c 和胡萝卜素。它们的颜色各不相同,在植物和浮游植物物种中的含量也不同。云量:云量测量是在现场近似的,记录范围从零云量(无云)到 100% 云量(完全阴天)。云量会影响叶绿素的产生、塞氏深度测量和气温。颜色:颜色是采样水的色调,通过主观测试确定,该测试涉及将样品与已知浓度的有色溶液进行比较。天然金属离子(铁和锰)、腐殖质和泥炭物质、浮游生物、单宁和工业废物会影响水体的颜色。浊度也会影响颜色。溶解氧:溶解氧 (DO) 是水中的气态氧 (O 2 )。水吸收氧气的速率取决于温度、盐度、大气压和风速。低温、低盐度和低海拔是吸收更多氧气的理想因素。在不存在氧气或鱼类种群、细菌含量高甚至存在污染的泉水中,溶解氧可能接近 0 mg/L,而在风引起的高通量曝气以及光合作用过程中水生植物产量高(如藻类大量繁殖)的情况下,溶解氧可能高达 15 mg/L。溶解氧可以间接表示水体的质量。肠球菌:肠球菌是一种指示生物,其存在决定了水质的恶化。肠球菌是粪便链球菌的一个亚群。肠球菌对各种温度和 pH 的抵抗力使其成为实验室水样分析的理想高效细菌。
摘要 - 我们报告了一种可生物降解的自动传感器,用于测量体内溶解的氧气。操作原理是氧还原反应与腐蚀电化学夫妇阴极的通常显性氢还原反应的竞争。由于氧还原反应对总体电化学反应的相对贡献取决于局部氧气的集中,因此这对夫妇的输出电压也取决于局部氧气浓度。通过使用层压层嵌入可生物降解的聚(乳酸)底物中,将传感器嵌入可生物降解的金属镁和钼。外部生理溶液被用作电解质。在典型的生理氧浓度范围内测量了传感器的输出电压(即,在整个腐蚀夫妇中产生的电压)是氧浓度的函数。观察到每百分比氧浓度约为6 mV的线性输出电压响应;高于此范围的氧气浓度导致传感器饱和。[2020-0192]
还提供各种安装选项,包括用于开放式水箱和水道安装的浸入式安装系统、浮球系统和链式安装浸入式系统,以及用于面板安装系统的流通式系统。Aztec 400 溶解氧系统具有多种安装选项,可用于废水富含有机碳且使用生物废水管理的任何行业。典型工艺包括污水处理、啤酒酿造、动物加工和造纸。在水产养殖环境、水坝或排放监测以及食品和饮料生产过程中,测量溶解氧水平的需求也很常见。
标准型号 TriOxmatic ® 700 是一款坚固耐用的溶解氧传感器,具有非常耐用的 50 微米厚的疏水膜,最小流速为 0.5 厘米/秒,平均响应时间小于 180 秒。凭借这些特点,该膜传感器非常适合市政污水处理厂生物净化阶段的任何 D.O 测量;例如控制氧合。传感器的响应可防止由于气泡上升而引起的信号干扰,从而消除错误读数并提高稳定性。这对于曝气池中的测量尤其重要。
