电池,电容器和传感器(2)。石墨烯非常坚固,灵活且轻巧,因此为研究人员而设计的有效生产方法至关重要(3)。一种这样的方法称为基于溶剂的去角质。此过程需要使用溶剂(通常是有机的)与侵略性超声处理,以从散装石墨中剪掉石墨烯薄片(4)。该实验的目的是利用基于溶剂的去角质方法来生成石墨烯层,而是确定使用石墨粉(一种相对常见物质)的功效来创建导电涂层或糊状。具有这些导电性能的糊状物可能具有许多可能的应用,从基础架构中的导电混凝土或用作3D打印和设计中的材料。在此调查的情况下,使用处理后的石墨解决方案是为了使可自定义的电路板不使用诸如酸蚀刻之类的技术 - 这种情况不仅具有现实世界的用途,而且可以通过构造简单的原型来进行测试。将“溶解”一词应用于石墨烯或石墨有些困难,因为它是共价网络。试图在水中释放单个碳原子以形成糊状物将非常困难,即使不是不可能,因为共价碳键非常牢固,并且水中的极性不足以将其分开并增加溶质的表面积(5)。相反,石墨层被去除,以通过溶剂将其散布的目的,因此在这种情况下溶解将包括破坏层之间的分子间力(6)。具体而言,我们以超声化和不同的有机溶剂形式探讨了物理搅拌对石墨溶解度及其电导率的影响。我们假设使用这些技术将石墨分散到溶液中会增加石墨的溶解度和溶液的总体电导率。我们根据以下预测得出了这个结论:超声处理会干扰层之间的某些π-π堆积相互作用,增加了溶液的表面积和电导率(也许也可以释放一些电子以通过结构运动)。我们还认为,有机溶剂将允许比水更好地分散石墨层,因为石墨的疏水性不会阻止溶剂 - 溶质相互作用(并且可能防止形成任何形式的疏水性clathrate结构)。由于其极性的性质极高,溶剂之类的水可能很容易鼓励重新融合。我们得出的结论是,将丙酮用作溶剂与超声处理是创建石墨糊的最成功的方法。创建的糊
相比之下,统计模型基于历史数据,识别输入和输出变量之间的模式和关系。尽管这些模型的资源密集型和更快的实施速度较低,但由于几个因素,包括自然数据噪声,不完整的数据和有限的空间分辨率,它们通常缺乏准确性。5另外,统计模型通常受线性和正态性的假设的约束,这可能不能充分代表环境过程的非线性和动态性质。为了克服与环境和水文过程相关的高不确定性和复杂性,研究人员近年来越来越多地采用了数据驱动的方法。在其中,人工智能(AI)算法,尤其是机器学习(ML)和深度学习(DL)方法,已获得了突出性。这些方法不需要对输入变量和目标变量之间关系的明确指定,从而可以快速处理以及处理数据中复杂的非线性交互的能力。6
通讯电子邮件:bahauddeen.salisu@umyu.edu.ng引言化学农药和肥料对农业产量至关重要,但是它们对环境,植物,动物和人类健康的有害影响已导致对环保的植物保护植物保护(Patel等。,2014年)。生物肥料由从植物根或土壤中提取的活微生物组成(Aggani,2013年),它在化学肥料的替代品中广受欢迎。它们通过增加氮的可用性来降低农作物的生产成本,提高生长和产量,并促进生长促进性物质(如生长素,细胞分裂素和吉伯林林)的生产(Bhattacharjee和Dey,2014年)。含有有益微生物的生物肥料,而不是合成化学物质,而是通过提供必需的养分来改善植物的生长,同时保持环境健康和土壤生产率(Singh等,2011; Verma等,2017)。他们
口服固体剂型形式是由于非侵入性,易于给药,缺乏微生物的关注等导致药物施用的普遍形式。但是,由于生物利用度问题,溶解度有限的API不适合口服。可以通过颊药物输送,微针,肠胃外给药,受控药物输送,纳米明确的药物递送,络合,液化技术51等来改善生物利用度。6-16。临床开发中约有40%的销售药物和90%的API面临溶解度的挑战。溶解度增强可以提高生物利用度,而生物利用度受到溶解度的限制,但不能受到药物吸收。可以通过几种方法来实现溶解度增强通常,某些多态性形式基于其热力学能量表现出更高的溶解度。使用这种多态性形式来增强溶解度可能会受到专利诉讼的限制17-21。溶解度增强技术是根据API和其他参数的性质选择的。无定形固体分散体(ASD)是API的溶解度增强技术,无法通过粒径减少来增强。热熔体挤出,喷雾干燥,湿球,动力醇,流体床涂料技术通常用于行业生产ASD。除了ASDS。热熔体挤出能够准备多种剂型,例如受控药物释放,膜,半固体,纳米颗粒等22-29。
摘要:上下文:牙髓治疗的成功主要取决于有效的灌溉方法溶解牙髓组织,清除碎屑并清洁复杂的根管系统。次氯酸钠(Naoci)是由于其组织 - 溶解和抗菌特性而广泛使用的牙髓灌溉。目的:在次氯酸钠的不同温度下,人浆组织溶解的定量评估。材料和方法:从新鲜提取的前磨牙收集了二十四个人类纸浆组织的样品。样品分为两组:I组为正常生理盐水和II组为5.25%NAOCI。根据温度(37°C和60°C)进一步将每个组分为两个亚组,并根据组织溶解的时间间隔(1分钟,5分钟和60分钟)。结果:结果表明正常盐水未显示纸浆组织的任何溶解。相比之下,与正常盐水相比,在温度和所有时间间隔中,NAOCL的组织溶解能力明显更高。在60°C下接触5分钟至60分钟时,会看到较少的纸浆溶解。结论:根据当前研究的发现,可以得出结论,当与果肉组织接触至少5分钟,最多60分钟时,5.25%NAOCL在60°C温度下表现出最大的牙髓组织溶解。关键字:牙髓灌溉,次氯酸钠,纸浆组织溶解,温度效应,时间间隔1。引言在牙髓疗法领域获得成功的结果取决于生物力学制备准确性的三合会,化学消毒的效力以及所有根尖的有效封闭。根管系统的具有挑战性且复杂的内部解剖结构使得难以对根管系统进行彻底消毒。因此,灌溉对于消除牙本质碎屑,溶解剩余的牙髓组织和
材料和方法:将体重为8.22±0.03 g的特定无病原体虾被随机分配给两组,四个重复,每个储罐的密度为15虾。虾在每个复制中含有50升PPT海水的循环储罐中培养。氧气,并使用纯氧气微泡发生器以15 mg/L的速度向治疗罐提供。虾被喂食,含有39%蛋白质的商业饲料颗粒,每天的体重的4%,持续30天。在第15天和第30天确定平均每日增长(ADG)和饲料转化率(FCR)。每天测量虾分s。单个血淋巴样品,并分析了总血细胞计数,降低血细胞计数以及生长和免疫相关基因的表达。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年4月18日。; https://doi.org/10.1101/2023.04.16.537078 doi:biorxiv Preprint
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
Precision 3D打印技术和材料的进步具有戏剧性的改进的原型制作技术,从而使生物医学平台的世界广泛更快,更有效。[1]微分辨率3D打印机可以通过使用微铣削技术来制造高度复杂的质量可实现部分,而功能不可能提高。[2]因此,微尺度3D打印技术在生物医学领域中用于开发简单有效的透射药物输送平台(包括微针(MNS)),最近由于克服了克服传统MN的几何局限而引起了人们的注意。[3]由微米尺度聚合物针制成的可溶解的MN斑块是一种患者友好型的透皮药物输送系统,能够以最小的侵入性将活性化合物延伸到皮肤中。[4]然而,由于其锥形几何形状,常规MN并不能完全穿透皮肤,从而导致负载货物的递送精度较低,[5]对它们在药物领域中的临床应用和商业化产生了负面影响。[6]因此,已经开发出各种MN施加器,箭头微结构,微柱基和多步制造方法,以克服有限的Contectional MN的交付精度。[7]但是,这些方法的制造复杂性限制了它们在制药行业的批量生产和应用。因此,迫切需要开发一个简单且可实现的MN平台,能够准确交付负载的货物。在此,使用数字灯处理(DLP)基于芯片的图3D打印机用于制造一种可在皮肤组织中完全插入和锁定的新型自锁的MN,从而显着提高了Microuse递送精度,从而克服了传统MN的限制。制造简单性和质量增强性主要是在自我锁定的MN发展过程中主要集中在一个高度精确的透皮药物输送平台上。简而
Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。 Z. (2021)。 在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。 Electrochimica Acta,392,139013-。 https://dx.doi.org/10.1016/j.electacta.2021.139013Yu,L.,Ong,S。J. H.,Liu,X.,Mandler,D。&Xu,J。Z.(2021)。在锂硫电池中多硫化物溶解的重要性以及对高能量电解质/阴极设计的视角。Electrochimica Acta,392,139013-。https://dx.doi.org/10.1016/j.electacta.2021.139013