植物中的水势:海岸红杉 (Sequoia sempervirens) 高达 116 米,是世界上最高的树 (a)。植物根部很容易产生足够的力量 (b) 压弯和折断混凝土人行道。水势是水中势能的量度,或给定水样与纯水(在大气压和环境温度下)之间的势能差。水势用希腊字母 ψ (psi) 表示,以压力单位(压力是一种能量形式)表示,称为兆帕 (MPa)。纯水势 (Ψ w pure H2O ) 被指定为零值(即使纯水含有大量势能,也会忽略这些能量)。因此,植物根、茎或叶中水的水势值以 Ψ w pure H2O 表示。植物溶液中的水势受溶质浓度、压力、重力和称为基质效应的因素的影响。可以使用以下方程将水势分解为其各个组成部分:
g ee和g ew代表了异位孔和异位 - 水柯克伍德 - 贝积分。因此,理想的混合物用AE = 1描述,而条件A EE̸= 1表示与理想行为的偏差,如参考文献中的更多详细信息所述。[2]。为此,我们在纯水中进行了150 ns长度的原子MD模拟,并具有相同的仿真方案和设置,如1KR8 DNA发夹所述。与DNA-ectoine模拟相反,我们用水分子代替了DNA以填充自由体积。在选项卡中给出了模拟系统的详细信息。4。
摘要:从农场动物传播的肥料可以释放抗生素耐药菌(ARB),这些细菌(ARB)携带抗菌抗性基因(ARGS)进入空气中,由于在牲畜行业中强烈使用抗生素,对人类和动物的健康构成了潜在的威胁。这项研究分析了不同肥料类型和扩散方法对在受控环境中空气中的细菌排放和抗生素耐药基因的影响。牛,家禽粪便和猪浆液使用两种类型的撒布机(飞溅板和运球杆)在共同的环境中散布,并在使用高量的空气采样器偶联到粒子柜台之前,期间和之后收集所得的排放。通过qPCR进一步量化了总细菌,粪便指标和总共38个不同的ARGS亚型。扩散的家禽肥料导致总细菌的排放率最高(10 11 16s基因拷贝/kg肥料蔓延),古细菌(10 6 16s基因拷贝/kg肥料),肠球菌,肠球菌(10 5 16S基因拷贝/kg肥料)和E. coli and coli and coli and Copies/kg Manure and Cowry Copies and cow Manure and cow Munure and cow Manure the Cowry and cow Manure and cow Munure and cow Manure and cow Manure and cow Manure)运球吧。肥料扩散与牛和家禽的机载氨基糖苷基因(10 6基因拷贝/kg肥料)有关,其次是猪浆(10 4基因拷贝/kg肥料)。这项研究表明,肥料和扩散设备的类型会影响空气传播细菌的排放率,并且会影响ARG。
从森林区域传输的空气中微生物可以通过形成冰核来影响云形成。然而,尚不清楚空气传播微生物在森林地区的垂直运输。在夏季,秋季和冬季,我们在三个高度上收集了三个高度的气溶胶,[地面(2 m),冠层顶部(20 m)和高于树冠(500 m)],以分析垂直分布在森林上的机载微生物群落。在夏季和秋季,微生物颗粒在森林区域(顶部和地面)保持相似的浓度,并降低到上面顶篷区域的微生物浓度的1/10。冬季的颗粒浓度表示有效的垂直混合在500 m以下。高通量DNA测序表明,空气中的微生物群落由与衰减植物垃圾降解相关的陆地和浮游物种组成。无论三个季节如何,上面的树冠都由门静脉细菌和富公司的耐大气应激细菌主导。与细菌不同,琼脂菌的蘑菇型真菌成员的相对丰度超过了冠层,主要是在整个夏季和冬季,而霉菌型真菌dothideymosycetes物种经常在秋天的所有三个高度上发现。从三个高度的空气样品中获得的镰刀菌,假单胞菌和芽孢杆菌分离物,表明水滴冷冻中的冰成核的高活性
疟疾仍然是一个公共卫生问题,每年仍有超过500万人死亡。尽管许多国家正在进行努力,但由于对大多数传统药物的抗药性,包括青蒿素化合物,这是目前可用的最有效的抗疟药,因此消除了疟疾。因此,迫切需要采用新药物的新药物,具有新的作用机理以绕过抵抗力。从这个意义上讲,最有希望的领域之一是探索运输蛋白。转运蛋白介导溶质摄取,以进行细胞内寄生虫增殖和存活。靶向转运蛋白可以利用这些过程来消除寄生虫。在这里,我们专注于恶性疟原虫的转运蛋白 - 被感染的红细胞作为潜在的生物学靶标,并讨论针对它们的已发表药物。
摘要:含有无环(1和3)和杂环(R)-3-氨基吡啶氨酸(2)和2-米诺吡啶(4)接头部分的铂 - acridine抗癌剂(PA)。与1相似,刚化的2显示了效力与SLC47A1(多药和毒素挤出蛋白1,MATE1)基因表达水平之间的强正相关,跨NCI-60癌细胞系。所有衍生物在HEPG2(肝脏),NCI-H460(肺)和MDA-MB-436(乳腺癌)中均显示出高水平的SLC47A1(癌细胞系百科全书,CCLE)。PAS比顺铂高350倍。在MATE1抑制测定中,在三种癌细胞系中观察到活性的显着降低(HEPG2低4000倍)。分子对接实验提供了对结构上不同的PAS与MATE1介导的转运的兼容性的见解。mate1是一个预测性标记和可操作的靶标,不论原始组织对PAS,都会使癌细胞敏感。
尽管通过空降途径传播的病原体多种多样,但几乎没有关于影响空气中病原体坚韧性的因素的数据。为了更好地理解并控制空中感染,这些因素的知识很重要。在这项研究中,三个代理,s。金黄色葡萄酒,g。硬化性孢子和MS2细菌噬菌体在30%至70%之间被雾化。空气样品以确定试剂的浓度。s。金黄色葡萄球菌的气溶胶中的生存率显着降低,高于60%。它显示了三种药物的最低恢复率,范围从大约70%RH的0.13%到30%RH时的4.39%。g。硬化性孢子的孢子显示出最高的韧性,恢复速率范围从41.85%到61.73%,而RH的影响很小。对于MS2噬菌体,观察到气溶胶中的韧性明显降低,中间RH的回收率约为4.24%,约为50%。这项研究的结果证实了RH对机载微生物的坚韧性的显着影响,具体取决于特定药物。这些数据表明,在不同的环境条件下,微生物在生物溶质中的行为各不相同。
使用政府图纸,规格或本文档中包含的其他数据出于政府采购以外的任何目的,都不会对美国政府有任何强制。政府制定或提供图纸,规格或其他数据的事实未许可持有人,任何其他人或公司,或传达任何可能与他们相关的专利发明的任何权利或许可。合格的请求者可以从国防技术信息中心(DTIC)(http://www.dtic.mil)获得本报告的副本。AFRL-SA-WP-TR-2020-0048已审查,并根据分配的分发声明获得批准出版。//SIGNATURE// //SIGNATURE// __________________________________ ______________________________________ TAMERA G. BORCHARDT, Lt Col, NC GUY R. MAJKOWSKI, Col, BSC Branch Chief, Biomedical Impact of Flight Division Chief, Warfighter Medical Optimization This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of它的想法或发现。
摘要:转运蛋白介导的耐药性是抗癌药物输送的主要障碍,也是癌症药物治疗失败的主要原因。膜溶质载体 (SLC) 转运蛋白在细胞对药物的摄取中起着至关重要的作用。SLC 转运蛋白的表达和功能在癌细胞中可能下调,从而限制药物进入肿瘤细胞,导致药物治疗无效。在这篇综述中,我们总结了目前对不同类型癌症中低 SLC 转运蛋白表达介导的耐药性的理解。SLC 转运蛋白靶向策略的最新进展包括利用转运蛋白的前药和纳米载体的开发以及对癌细胞中 SLC 转运蛋白表达的调节。这些策略将在未来抗癌药物疗法的发展中发挥重要作用,使药物能够有效地输送到癌细胞中。
我们开发了一种基于耗散粒子动力学(DPD)的计算方法,该方法将溶剂的水动力相互作用引入了溶质的粗粒模型,例如离子,分子或聚合物。dpd-solvent(DPDS)是一种完全非驻留方法,可以直接通过任何基于粒子的溶质模型以所需的溶剂粘度,可压缩性和溶质扩散率直接掺入流体动力学。溶质仅通过DPD恒温器与溶剂相互作用,这确保了溶质系统的平衡性能不受引入DPD溶剂的影响,而恒温器耦合强度则设定了所需的溶质扩散率。因此,DPD可以用作替代传统分子动力学恒温器,例如Nosé -Hoover和Langevin。我们证明了在聚合物动力学和通过纳米孔电流流动的情况下,DPD的适用性。该方法应广泛用作将流体动力相互作用引入现有的粗粒溶质和软材料模型的一种手段。