溶瘤病毒(OVS)作为一种有前途的抗肿瘤方法对肿瘤免疫疗法做出了重要贡献,这引起了人们的注意。他们提供了双重机制,包括对肿瘤细胞的直接杀伤作用以及用于升高抗肿瘤反应的免疫激活,这在许多临床前研究中已被证明。尤其是自然或转基因病毒,因为临床免疫制剂已成为一种新的有前途的肿瘤治疗方法。美国食品药品监督管理局(FDA)批准了塔利米烯Laherparepvec(T-VEC)治疗晚期黑色素瘤的治疗,可以将其视为OV临床翻译中的里程碑成就。在这篇综述中,我们首先讨论了OV的抗肿瘤机制,重点是靶向,复制和传播。我们进一步概述了肿瘤中当前OV的艺术状态,并强调了活化的生物学作用,特别是包括免疫力。更重要的是,从不同的角度进行了系统地讨论基于OVS的增强的免疫反应,例如与免疫疗法,OVS的遗传工程,与纳米生物学技术或纳米颗粒的整合以及抗病毒反应反应,并在原理上阐明它们的情况下。还强调了诊所中OV的发展,以分析临床试验中不同OV应用的现实和关注。最后,讨论了OVS作为已经广泛接受的治疗方法的未来观点和挑战。本评论将对OV开发提供系统的综述和深入了解,并为推动进一步的临床翻译提供新的机会和指导途径。
摘要:压力事件触发了一组复杂的生物学反应,这些反应跟随钟形的表演。低压力条件已显示出会引起有益的影响,特别是对突触可塑性以及认知过程的增加。相比之下,过度强烈的压力可能会产生有害的行为影响,从而导致几种与压力相关的病理,例如焦虑,抑郁,吸毒,强迫症和压力和创伤相关疾病(例如,在创伤事件的情况下,创伤后应激障碍或PTSD)。多年来,我们已经证明,海马中的糖皮质激素激素(GCS)响应于胁迫,介导了组织纤溶酶原激活剂(TPA)表达之间的平衡及其自身抑制剂纤溶酶纤溶酶质激活剂抑制剂-1(PAI-1)蛋白之间的平衡之间的分子转移。有趣的是,有利于PAI-1的转变负责PTSD样记忆诱导。在这篇综述中,在描述了涉及GC的生物系统之后,我们强调了TPA/PAI-1不平衡在临床前和临床研究中观察到的关键作用,与应激相关病理条件的出现相关。因此,TPA/PAI-1蛋白水平可以是随后发作与压力相关疾病的预测生物标志物,其活性的药理调节可能是这些使这些衰减疾病的潜在新治疗方法。
母羊、山羊和水牛奶中含有牛奶,这是由于 γ-酪蛋白在纤溶酶分解后发生等电聚焦所致。 该方法基于与认证参考标准的蛋白质模式进行比较,可以定性估计测试样品中的牛奶。
摘要 海洋生态系统富含“omega-3”长链(C 20-24)多不饱和脂肪酸 (LC-PUFA)。人们历来认为,这些脂肪酸的产生主要来自海洋微生物。最近,这一长期存在的教条受到了挑战,因为人们发现,许多无脊椎动物(大多生活在水中)都具有从头合成多不饱和脂肪酸 (PUFA) 和从中合成 LC-PUFA 所必需的酶机制。关键突破是在这些动物中检测到了称为“甲基末端去饱和酶”的酶,这种酶能够实现 PUFA 的从头合成。此外,在几种非脊椎动物门中,还发现了在 LC-PUFA 生物合成中起关键作用的其他酶,包括前端去饱和酶和极长链脂肪酸蛋白的延长。本综述全面概述了这些基因/蛋白质家族在水生动物(尤其是无脊椎动物和鱼类)中的补充和功能。因此,我们扩展并重新定义了我们之前对脊索动物中存在的 LC-PUFA 生物合成酶的修订,并将其应用于整个动物,讨论了关键的基因组事件如何决定不同分类群中去饱和酶和延长酶基因的多样性和分布。我们得出结论,无脊椎动物和鱼类都表现出活跃但明显不同的 LC-PUFA 生物合成基因网络,这是由复杂的进化路径与功能多样化和可塑性相结合的结果。关键词水生生态系统、生物合成、极长链脂肪酸蛋白的延长、前端去饱和酶、长链多不饱和脂肪酸、甲基端去饱和酶、ω-3
在前两个单元中,您已经了解了酶,即天然存在的生物催化剂,以及它们如何改变生物功能或生理过程。您知道酶是由生物分子(具体来说是蛋白质)构成的。药物是另一类化学物质或分子,当进入体内时,会引起生物功能或生理过程的变化。药物有两种类型:一种具有有益作用,另一种具有毒性作用。药物的有益作用和毒性作用源于它们与人体分子的相互作用。当您生病时,医生给您开的药可以很容易地将前者与您的日常生活联系起来。事实上,史前人类也认识到许多植物和动物材料的有益或毒性作用。早期的书面记录列出了许多类型的药物,其中包括一些至今仍被认为是有用药物的药物。您可能会问的问题是:酶和药物,尤其是有益类别之间的关系是什么?
摘要:直接芳基聚合(DARP)已成为一种环保,原子有效的方法,用于合成各种共轭聚合物。在这里,我们报告了一种由DARP组成的单锅方法,然后进行BOC脱身以合成功能性的,表面活性的含腺嘌呤的聚(烷基噻吩)。对聚合温度的仔细控制可以实现合成的一盘聚合和脱保护策略,并在24小时内实现了定量(> 99%)BOC脱落。这种温度控制的合成方法减少了额外的纯化和隔离步骤,从而使总合成更有效和实用,并允许制造更高的分子量聚合物。我们通过1 H NMR宿主 - 基因滴定研究进行了量化含有聚噻吩的腺嘌呤,T AD -T T 4H的氢键能力,并使用Benesie -hildebrand模型分析结果,产生的结果在18.7 m -1的缔合常数为18.7 m -1之间,烷基化胸腺胺和T AD -t -t -t -t -t -t t t t 4H。我们证明,T AD -T 4H可鲁棒地修饰纤维素过滤纸的表面,而修改后的纤维素滤纸CFP -T AD -T T 4H是具有超疏水性能(水Ca〜151°)的有效油水分离过滤器。腺嘌呤和纤维素之间氢键相互作用的效用突出了侧链工程对创建功能材料的重要性。
1 1,埃及纳斯尔市科学学院(女孩),埃及2号,植物学和微生物学系,阿尔·阿萨尔大学(Al-azhar University)科学学院(男孩),埃及,埃及,埃及,埃及,埃及3个蛋白质研究系,基因工程和生物技术研究所(研究) (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt, 4 Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt, 5 Pharos University in Alexandria, Alexandria, Egypt, 6 Department of Biochemistry, Faculty of农业,Zagazig大学,Zagazig,埃及,7临床微生物学系71,埃及纳斯尔市科学学院(女孩),埃及2号,植物学和微生物学系,阿尔·阿萨尔大学(Al-azhar University)科学学院(男孩),埃及,埃及,埃及,埃及,埃及3个蛋白质研究系,基因工程和生物技术研究所(研究) (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt, 4 Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, Egypt, 5 Pharos University in Alexandria, Alexandria, Egypt, 6 Department of Biochemistry, Faculty of农业,Zagazig大学,Zagazig,埃及,7临床微生物学系7