蛋白质合成是在所有生物体中发生的重要细胞过程,涉及蛋白质的产生。此复杂的过程由两个阶段组成:转录和翻译。转录发生在细胞核内,DNA充当产生信使RNA的模板(mRNA)。mRNA然后传播到细胞质的核糖体,这是翻译的位置。在这里,mRNA携带的遗传信息被解码以合成多肽链。**转录**是蛋白质合成的初始阶段,其中DNA的遗传密码被转录为mRNA。当RNA聚合酶附着在基因的启动子序列上时,此过程就开始了,促使DNA放松。酶然后读取DNA碱基并组装互补的mRNA链。用作模板的DNA链被称为模板或反义链,而其对应物是非编码或感官链。新形成的mRNA链反射了编码DNA链,尿嘧啶代替了胸腺素。**处理mRNA **涉及新合成的mRNA的进一步细化,也称为前mRNA。在它可以将细胞核作为成熟的mRNA退出之前,它会经历剪接,编辑和聚腺苷酸化,从而改变mRNA以准备翻译。对于有兴趣可视化此过程的人,**蛋白质合成流程图**可以是一个有用的工具。它提供了从DNA转录到最终蛋白质产物的蛋白质合成每个步骤的清晰结构化表示。此外,mRNA经过编辑,改变了某些核苷酸。这样的流程图可以帮助理解基于这种基本生物学功能的复杂相互作用和机制。遗传修饰增强了单个基因的多功能性,使其能够产生多种蛋白质。这是通过称为剪接的过程来实现的,该过程从蛋白质合成流程图中描述了从信使RNA(mRNA)中去除被称为内含子的非编码区域。剪接的mRNA仅由编码区域或外显子组成,这直接有助于蛋白质合成。核糖核蛋白,核中含有RNA的小蛋白,可促进该剪接。例如,由于这种编辑,参与血液中脂质转运的APOB蛋白以两种形式存在。较小的变体是由于插入的停止信号截断了mRNA的插入信号。5'上限过程为mRNA的铅端增加了一个保护性的甲基化盖,从而保护了它免于降解和辅助核糖体附着。一系列腺嘌呤碱基的尾巴标志着mRNA的结论,在其核出口和防御降解酶的防御中发挥了作用。分子生物学的中心教条概述了从RNA到蛋白质的过渡,这一过程称为翻译。这涉及将mRNA中的遗传代码读取以合成蛋白质,如流程图所示。后加工,mRNA将核和核糖体缔合,由核糖体RNA(rRNA)和蛋白质组成。核糖体解密mRNA序列,而转移RNA(tRNA)分子依次传递适当的氨基酸。翻译分为三个阶段:启动,伸长和终止。在开始期间,现在在细胞质中的mRNA与甲基化帽和起始密码子位点的核糖体亚基结合。具有与起始密码子连接的具有匹配的反物质的tRNA,形成了起始复合物。伸长涉及连续供应氨基酸的TRNA,这些氨基酸被添加到新生的多肽链中。每个tRNA转移后其氨基酸后出发,使核糖体沿mRNA进行进展,从而为下一个tRNA腾出空间。这种系统的添加氨基酸构建了多肽,直到该过程结束为止。蛋白质合成是一个重要的细胞过程,最终导致蛋白质的产生。它在两个主要阶段展开:转录和翻译。在转录过程中,DNA的遗传密码被转录为核中的信使RNA(mRNA),包括三个阶段:启动,伸长和终止。mRNA然后将这些遗传指令传输到发生翻译的细胞质核糖体。由核糖体RNA(RRNA)和蛋白质组成的核糖体读取mRNA序列。转移RNA(tRNA)分子根据mRNA代码将适当的氨基酸带入核糖体。rRNA促进了这些氨基酸的粘结,形成了多肽链。该链可能会进一步进行合成后修饰以实现其最终蛋白质结构。mRNA退出核之前,它会经过加工,成为准备翻译的成熟转录本。蛋白质合成的过程与分子生物学的中心教条一致,该过程映射了生物系统中遗传信息的流动。合成后,多肽链可能会折叠成特定的形状,与其他分子相互作用,或在内质网中进行其他修饰以实现其指定的功能。
摘要。由于输电线 (TL) 是电力系统中的重要组成部分,本文介绍了使用可编程逻辑控制 (PLC) 的三相 TL 系统过流保护的设计和实际实施。然后,PLC 在线监测每相负载电流的值并检测过流,同时通过发送输出信号来跳闸断路器 (CB) 线圈,从而隔离故障。PLC 的显示单元用于显示负载电流,并发出带有发生故障类型的警报信息。所提出的控制器程序还会在浪涌的一定时间内取消 CB 的跳闸信号并指示负载电流。此外,当过流释放时,自动重合闸系统可使 CB 恢复工作。与其他保护控制器系统相比,基于 PLC 的保护方法成本更低,精度更高,操作更安全。采用功能块图 (FBD) 语言来实现所提出的软件控制器。通过 LOGO! Soft Comfort V7.0 软件程序对所提出的控制器进行模拟,以便在下载到 PLC 之前对程序进行虚拟植入。
摘要:我们评估《清洁水法》保护的哪些水以及最高法院和白宫规则如何改变这一法规。我们使用空中图像和地球物理数据训练一个深度学习模型,以预测陆军工程兵团的150,000个管辖权确定,每个人都决定对一种水资源进行监管。根据2006年最高法院的裁决,《清水法》保护了美国三分之二的溪流和一半以上的湿地;根据2020年的白宫统治,它可以保护一半以下的溪流和四分之一的湿地,这意味着放松了690,000英里,3500万英亩的湿地英亩和30%的饮用水源。我们的框架可以支持在监管实施问题中的允许,政策设计和机器学习的使用。
微生物种群的生长和进化通常会受到空间周期环境中流体流的对流,对海洋生态学,木板的多样性和固定时间的空间种群遗传学产生了直接的影响。我们回顾了在两种受液体流动的竞争遗传微生物菌株的简化环境中,在理解这个丰富问题的情况下取得的最新进展。我们首先回顾了对液体底物的微生物范围扩展实验,然后继续讨论拮抗作用,即两个杀手微生物菌株,每种毒素分泌的毒素会阻碍其竞争者的生长(竞争性排斥),无论是在有或没有平稳流体的情况下。揭示了遗传线张力的存在的最新实验。耦合反应扩散方程,包括由二维中由特征流动基序组成的简单稳定细胞流对流的对流,揭示了局部流动剪切和可压缩性效应如何与选择性优势相互作用,从而对空间分支群体中的遗传竞争产生巨大影响。我们分析了包括来源,水槽,涡流和鞍座在内的各种一维和2D流量的几何形状,并显示了遗传界面动力学的简单分析模型如何使用来阐明核滴的成核,共存和流动驱动的遗传下降不稳定性。
摘要:本文提出了一种共轴旋翼飞行器的滑模PID控制算法,之后采用Adams/MATLAB仿真与试验进行验证,结果表明该控制方法能够取得满意的效果。首先,当考虑上下旋翼间的气动干扰时,很难建立准确的数学模型,利用叶素理论和动态来流模型计算上下旋翼间的气动干扰和桨叶的挥动运动,其余不能准确建模的部分通过控制算法进行补偿。其次,将滑模控制算法与PID控制算法相结合对飞行器的姿态进行控制,其中,采用PID控制算法建立姿态与位置之间的关系,使飞行器能够更加平稳地飞行和悬停。第三,将飞行器的三维模型导入Adams,建立动力学仿真模型。然后在Simulink中建立控制器,并将控制器与动态仿真模型进行联合仿真,并通过仿真将滑模PID控制算法与传统PID控制算法进行比较,最后通过实验验证了滑模PID控制算法与传统PID控制算法的有效性。
成纤维细胞样滑膜细胞 (FLS) 是促进类风湿性关节炎 (RA) 病理的关节衬里细胞。目前的疾病改良抗风湿药物 (DMARD) 通过全身免疫抑制起作用。针对 FLS 的方法可能与 DMARD 相结合,以改善对 RA 的控制,而不会增加免疫抑制。在这里,我们评估了免疫球蛋白样结构域 1 和 2 (Ig1&2) 用于 RA 治疗的潜力,这是一种激活 FLS 上的受体酪氨酸磷酸酶 sigma (PTPRS) 的诱饵蛋白。我们报告 PTPRS 表达在滑膜衬里 RA FLS 中富集,并且 Ig1&2 减少了 RA 的迁移,但不减少骨关节炎 FLS 的迁移。施用 Fc 融合 Ig1&2 可减轻小鼠的关节炎,而不会影响先天或适应性免疫。此外,PTPRS 在 FLS 中通过磷脂酰肌醇 3-激酶介导的途径被肿瘤坏死因子 (TNF) 下调,而 TNF 抑制会增强关节炎关节中 PTPRS 的表达。无效剂量的 TNF 抑制剂和 Fc-Ig1&2 的组合可逆转小鼠的关节炎,为 FLS 靶向疗法和免疫抑制 DMARD 疗法之间的协同作用提供了一个例子。
抽象的背景SGN-B7H4V是一种新型的研究葡萄蛋白抗体 - 药物结合物(ADC),其中包含B7-H4指导的人单克隆单克隆抗体,通过蛋白酶 - 蛋白酶链接的男性(MCARIMIMIMIMIMIMIMIMIMICIDOCAPRINERERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINERINE)(MMAE)与细胞毒性负荷单甲基单甲基单甲基抗体(MMAE)共轭。这种Vedotin Linker-Pay负载系统已在多个食品药物管理局批准的药物中得到了临床验证,包括Brentuximab vedotin,Enfortumab Vedotin和Tisotumab Vedotin。B7-H4是一种免疫检查点配体,在各种实体瘤上表达升高,包括乳腺癌,卵巢和子宫内膜肿瘤,以及有限的正常组织表达。SGN-B7H4V旨在通过与靶细胞表面上的B7-H4结合并在B7-H4/ADC复合物内部化后释放细胞毒性有效载荷MMAE来诱导针对靶细胞的直接细胞毒性。方法B7-H4表达以多种实体瘤类型的免疫组织化学为特征。还评估了SGN-B7H4V在体外和各种异种移植肿瘤模型中杀死表达B7-H4的肿瘤细胞的能力。最后,使用免疫能力的鼠B7-H4表达Renca肿瘤模型评估了SGN-B7H4V作为单一疗法的抗肿瘤活性,并与反编程的细胞死亡1(PD-1)剂结合使用。结果免疫组织化学证实了多种实体瘤的B7-H4表达,在乳房,子宫内膜和卵巢肿瘤中患病率最高。在免疫能力的鼠B7-H4表达肿瘤模型中,SGN-B7H4V促进了稳健的抗肿瘤活性,作为一种单一疗法,当与抗PD-1剂结合使用时会增强。在体外,SGN-B7H4V通过MMAE介导的直接细胞毒性和抗体介导的效应功能(包括抗体依赖性细胞毒性和抗体依赖性细胞吞噬作用)杀死了表达B7-H4的肿瘤细胞。 体内,SGN-B7H4V在多种异种移植乳腺癌和卵巢癌模型中表现出强大的抗肿瘤活性,包括具有异质B7-H4表达的异种移植肿瘤,与Vedotin ADC的能力一致,这与VIDER ADC的能力一致。在体外,SGN-B7H4V通过MMAE介导的直接细胞毒性和抗体介导的效应功能(包括抗体依赖性细胞毒性和抗体依赖性细胞吞噬作用)杀死了表达B7-H4的肿瘤细胞。体内,SGN-B7H4V在多种异种移植乳腺癌和卵巢癌模型中表现出强大的抗肿瘤活性,包括具有异质B7-H4表达的异种移植肿瘤,与Vedotin ADC的能力一致,这与VIDER ADC的能力一致。