自 21 世纪初以来,美国一直积极发展高超音速武器(飞行速度至少为 5 马赫的机动武器),将其作为常规全球快速打击计划的一部分。近年来,美国将这种努力集中在开发高超音速滑翔飞行器(从火箭发射,然后滑翔到目标)和高超音速巡航导弹(飞行过程中由高速吸气式发动机提供动力)。正如前参谋长联席会议副主席、前美国战略司令部司令约翰·海顿将军所说,这些武器可以“在其他部队无法使用、被拒绝进入或不受欢迎的情况下,对远距离、有防御和/或时间紧迫的威胁 [如公路机动导弹] 进行反应灵敏的远程打击”。另一方面,批评者认为,高超音速武器缺乏明确的任务要求,对美国军事能力贡献不大,而且对威慑没有必要。
他的采购任务包括武装侦察直升机项目助理项目经理和武装侦察直升机产品经理。2015 年 6 月,米尔斯先生被任命为精确射击火箭和导弹系统的项目经理,负责管理多管发射火箭系统 (MLRS) 系列发射器和 MLRS 系列弹药,包括基本和增程自由飞行火箭、制导 MLRS 火箭的多个增量、陆军战术导弹系统和精确打击导弹。2019 年 7 月,米尔斯先生被任命为通用高超音速滑翔体的项目经理,该滑翔体是陆军快速能力和关键技术办公室管理的远程高超音速武器系统的一部分。米尔斯先生于 2023 年退役,继续担任陆军文职人员。米尔斯先生目前担任陆军高超音速项目办公室副主任,负责监督远程高超音速武器系统的各个方面。
46°44'42"N , 000°19'55"E - 以 46°35'15"N , 000°18'24"E 为中心的 9.5 NM 半径时弧 (ARP) - 46°38'54"N , 000°31'10"E - 46°26'19"N , 000°20'17"E - 46°25'23"N , 000°17'22"E - 以 46°34'53"N , 000°17'53"E 为中心的 9.5 NM 半径时弧 - 46°30'01"N , 000°06'02"E - 46°32'27"N , 000°06'20"E - 46°34'30"N , 000°13'30"E - 46°35'40"N , 000°15'30"E - 46°39'30"N , 000°17'00"E - 46°41'44"N , 000°15'20"E - 46°44'42"N , 000°19'55"E CTR POITIERS BIARD 第 2 部分 H24 从 MON 0500 或 HOL 0700 到 SAT 1900 或 HOL 2100 前一天。周日:0700至2100。滑行活动期间降级为 G。由于滑翔活动,ATIS POITIERS 实际宣布降级,将 CTR 2 降级至 G。不包括区域 LF-R 105 A 和 LF-R 105 B 的干扰部分。滑翔活动期间降级为 G 级。宣布 POITIERS ATIS 实际降级,CTR 2 因滑翔活动降级为 G 级。LF-R 105 A 和 LF-R 105 B 区域的干扰部分除外。
SYSCOM:ONR 赞助计划:ONR 代码 351:高超音速过渡的基础和应用研究目标:美国海军的常规快速打击 (CPS) 计划 TPOC:Eric Marineau 博士 eric.marineau@navy.mil 其他过渡机会:该技术专门针对中程或中程助推滑翔高超音速武器,这些武器可从减少二模不稳定性对边界层过渡的贡献中受益,包括国防高级研究产品局 (DARPA) 的战术助推滑翔 (TBG) 计划和美国空军先进快速反应武器 (ARRW) 计划。注:该图显示了 DARPA 的 Falcon 高超音速测试飞行器上的碳/碳气动外壳的示例。正在开发的气动外壳材料将延迟或防止高超音速飞行器的边界层过渡,降低热负荷和由此产生的工作温度,从而减少绝缘重量并增加飞行器续航里程。
高超音速武器主要有两种类型:高超音速巡航导弹 (HCM) 和高超音速滑翔飞行器 (HGV)。北约科学技术组织等一些机构还将高超音速“后隐形”攻击和侦察机列入其中,预计到 2030 年代问世。HCM 是现有巡航导弹的加速版,飞行高度为 20-30 千米。它们由称为超音速燃烧冲压发动机的吸气式喷气发动机推进。这些“超燃冲压发动机”在燃烧阶段之前将进入的空气压缩在一个短漏斗中,使发动机在高速下极其高效地运转。由于超燃冲压导弹直接从大气中获取必要的氧气,因此体积更小、机动性更强。相比之下,HGV 则是无推进式,依靠火箭助推滑翔技术升入高层大气。在 40-100 公里的高度释放后,它们以高超音速飞行,无需关闭动力即可打击目标。它们能够机动并在不同高度释放,这使得它们的轨迹难以预测和计算。
首先道天线为仪表着陆系统的组成部分,它能够提 提供准确的方向指示及下降导航讯号,在正常或即使在统计的天气状况下,航机亦能安全地在跑道上着陆。 滑翔路径天线是安装在机场的仪表着陆系统的一个组成部分,提供精确的下降引导信号,以便在所有天气条件下飞机在跑道上安全着陆。
在当天的第一个小组讨论中,我们了解到对手的打击和 IAMD 方法将如何挑战我们自己的作战概念。以色列导弹防御组织前主任 Uzi Rubin 博士认为,直到最近,威胁才可以根据高度和速度进行整齐的分类。例如,高空飞行的快速目标(如弹道导弹)和低空飞行的目标(如巡航导弹)之间存在明显区别。这反过来又促成了一种基于将威胁细分为不同层级的技术方法来解决问题,不同的系统可以拦截不同层级的威胁。这种模式在几个方面受到了挑战。首先,高超音速滑翔飞行器 (HGV) 和俄罗斯 9M723 等准弹道导弹等能力的出现,它们都以极高的速度在不同高度飞行。尤其是高超音速滑翔飞行器,由于其速度和极高的机动性,对旧模式构成了挑战。此外,无人机等低空威胁正变得越来越复杂,可以配备一系列推进系统。结果就是低空空间更加拥挤,无人机和巡航导弹在其中协同作战。这些转变的累积效应极大地挑战了基于构建特定系统以应对特定挑战的防空和导弹防御模式。
独立教师研究 迅速全球打击:中国与快速全球打击 司乐如博士 关键主题 • 仔细研究中国科学期刊,可以发现有关迅速全球打击 (PGS) 的新观点。随着中国官方国防白皮书篇幅越来越短,技术期刊为了解中国军事现代化的威胁认知和方向提供了更清晰的窗口。它们表明,中国技术和军事机构正在对对抗和开发高超音速、精确制导和助推滑翔技术进行大量研究。这些研究的数量远远超过迄今为止有关弹道导弹防御 (BMD) 相关技术的研究。与 BMD 相比,中国以快速全球打击为导向的文献结合了科学和战略细节,反映了将战略部门整合到技术机构的更广泛转变。 • 中国分析人士认为,快速全球打击是美国实现“绝对安全”更大努力的一部分,以 BMD 为盾,快速全球打击为剑,以便华盛顿能够先发制人。由于美国对使用PGS的禁忌门槛较低,中国分析人士倾向于将美国PGS视为对北京常规武器和核武器系统以及指挥和控制中心的威胁。由于中国将多种美国平台定义为PGS相关系统,其分析人士并未排除这些平台可运载核武器的可能性。尽管中国批评美国,但中国在2008年和2010年进行的弹道导弹防御试验以及2014年向PGS迈进的试验表明,中国正在寻求类似的系统。如果将同样的先发制人理念应用于中国自己的PGS,那么无论是否宣布,中国的核态势都可能发生变化。• 中国对美国PGS的概念很广泛,而且不定型。它不仅包括构成美国PGS计划的助推滑翔系统和末端制导弹道导弹,还包括可重复使用的无人航天器和无人超燃冲压发动机。中国技术期刊上刊登了已停产或取消的美国项目,理由是美国军事项目永远不会真正结束。即使面对华盛顿的经济挫折,中国分析人士仍认为,美国已经在进行 PGS 相关测试,尤其是高超音速航天器。虽然中国作者倾向于将 PGS 归入太空武器类别,但他们并不孤立地看待它。相反,他们讨论其网络空间和海上应用及弱点,将其作为不断扩大的跨域战争研究的一部分。 • 中国战略和技术专家正在探索针对美国 PGS 的各种对策,从探测技术到拦截器,以及 C4ISR 禁用电子战措施。中国也在开发自己的高超音速精确制导助推滑翔系统,以高超音速助推滑翔 DF-21D 和 WU-14 为例。通过将战略分析和规划融入技术研究,中国对美国 PGS 的追求