2.9.1.3. 单座滑翔机 5 极 DIN 插孔接线图 ...................................................................... 73 2.9.2. 双座电动滑翔机 ............................................................................................................. 74 2.9.2.1. 配置设置......................................................................................................................... 74 2.9.2.2. 双座电动滑翔机接线图 ............................................................................................. 75 2.9.3. 通用航空 (GA) 飞机 ......................................................................................................... 76 2.9.3.1. 配置设置(使用标准麦克风) ............................................................................. 76 2.9.3.2. 使用标准麦克风的通用航空 GA 接线图 ............................................................. 77 2.9.4. 独立双耳机配置(两个 IC 电路) ............................................................................. 78 2.9.4.1. 配置设置......................................................................................................................... 78 2.9.4.2.接线图 独立双耳机配置 - 两个 IC 电路 ...................................................................... 79 2.9.5. AR620X 双座串联配置 .............................................................................................. 80 2.9.5.1. 配置设置................................................................................................................ 80 2.9.5.2. 接线图
5. 政策变更说明。此修订将代码 0000 保留给某些广播式自动相关监视 (ADS-B) 装置,除非飞机处于二次监视雷达 (SSR) 覆盖范围内,否则这些装置不会检测和设置 ATC 分配的信标代码。开机时广播“0000”将允许 ATC 自动化系统处理 ADS-B 数据以呈现给空中交通管制员。与 2015 年对 VFR 飞机的信标代码 1200 所做的更改类似,此修订允许可能与 ATC 保持联系的 VFR 滑翔机继续使用信标代码 1202。由于许多滑翔机使用应答器设备,在飞行中更改信标代码可能是一个繁琐的过程,会分散飞行员对扫描交通的注意力。此外,由于滑翔机通常具有非常独特的飞行剖面,允许 VFR 滑翔机在与 ATC 联系时保持代码 1202 可保留该信标代码的意图,即向其他飞机以及 ATC 发出滑翔机存在的警报。此修订还删除了功能代码的定义,因为它们不再用于 NAS,并更正和更新了附录 A、表 A-1、国家信标代码分配摘要中的几个条目;以及附录 B、表 B-3、ARTCC 分配。整个修订版都进行了微小的编辑、可读性和格式更改。重大更改以粗体字标出。
摘要 在地球上获得微重力是科学实验以及测试和展示未来航空航天技术(无论是用于太空研究还是工业)的关键组成部分。不幸的是,最优质的解决方案是最昂贵的,而替代方案很少或很难预订。此外,微重力平台的供应商仅集中在少数几个地方,这些地方在地理位置上可能离客户很远——迫使他们应对科学有效载荷国际运输中涉及的复杂物流和监管挑战。因此,可用性、可负担性和较长的交货时间是现有微重力平台的主要问题。然而,很少有人考虑设计和推出一种新的创新型替代微重力平台。随着国际空间站的消亡,一些机构进行了市场分析,以评估私人拥有的亚轨道飞行器或空间站的商业潜力。这些报告似乎表明,微重力的一些应用不需要在太空中进行,可以通过其他方式进行。此外,最近在欧洲各地进行的测试活动表明,滑翔机在一定程度上可以提供许多客户所追求的微重力环境。本研究重点是评估微重力滑翔机飞行的经济可行性,并找出这种新型微重力平台是否有可持续的商业模式。确定了微重力的商业应用,并列出了每种情况下它们在最大允许加速度、可变性和持续时间方面的要求。然后将这些与滑翔机可以提供的进行比较,以确定潜在市场。基于该分析,我们提出了一个基于滑翔机的微重力测试平台和标准化接口,允许以可扩展、分布式和经济可行的方式进行微重力测试,从而为商业 NewSpace 公司和研究实验室随时随地进行具有成本效益的原型测试。我们还讨论了此类平台对降低开发太空探索新技术的成本和风险的潜在影响。关键词:微重力、研究、滑翔机、滑翔机、市场分析、技术
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
修订 0 日期:2018 年 3 月 22 日 初次发行 修订 1.0 日期:2019 年 3 月 22 日 重新格式化、重新编号 SEI 列表。 修订 2.0 日期:2024 年 6 月 10 日 重新格式化 SEI 列表,包括 SEI 第 1 部分和 SEI 第 2 部分。修订 1.0 中的 SEI 编号移至主题作为参考。删除:1000、1020、1280、1340、1580、1700、1880、2000、2080、2120、2260、2280、2320、2500、3040、3060、3280、3320、3400、3480、3940、3960、4020、4040、4060、4080、4140、4160、4180、4220、4240 修订:1200、1240、1360、1480、1780、1820、2140、2250、2300、 2980、3780、3920、3970 增加:往复式发动机上的双电子点火系统(参考 A-1401)、需要授权(AR)操作的必要导航性能(RNP)(参考 A-1808)、电池 - 不可充电锂电池/电池系统(参考 A-0503)、弹道降落伞系统。更新:FAA 组织名称,小型飞机标准处或 SASB 更改为政策和标准处,飞机评估组或 AEG 更改为飞机评估处或 AED。修订 3.0 日期:2024 年 11 月 4 日 删除:5 修订:17、25、39 添加:26、32 更新:重新编号列表。
该俱乐部是 Flying Start Challenge 的支持者之一,该比赛由西南地区的企业和组织为当地学校举办,旨在帮助培养科学和工程技能,并突出工程职业的机会。要了解更多信息,请访问 www.flyingstartchallenge.co.uk。挑战赛的最后阶段于今年 3 月 18 日在 Yeovilton 的 RNAS 博物馆举行。为了激发兴趣,David Zarb 同意带上他的 Ventus 2cxt“Charlie Zulu”,并将其作为静态展示品在博物馆外进行安装。Jeremy Mitcheson 和 Bob Page 与 David 一起安装/拆卸滑翔机,并与(大多数)非常感兴趣的学生和他们的老师进行交流。CZ 看起来非常时尚,旁边还有一架 Sea King 和一架 Lynx 直升机,也在静态展示中。挑战之一是让每所学校设计和建造一架模型滑翔机,花费不到 15 英镑。每架滑翔机都要进行两次室内飞行,获胜者就是
机翼是飞机(吸气式发动机)的主要结构部件,用于在飞行过程中产生升力。发动机启动时,空气通过进气口吸入压缩机,增加压缩机出口的压力比。然后空气和燃料在燃烧室内混合并燃烧。当高压高温气体通过喷嘴加速时,会产生推力,推动飞机向前运动。由于这种向前运动,空气流过具有空气动力学形状的机翼。由于机翼的空气动力学形状以及伯努利原理,机翼底部的流速较小,机翼顶部的流速较高。由于这种压力差,在机翼的顶部和底部表面之间产生了升力。机翼必须具有较高的强度重量比和较高的疲劳寿命,因为它在飞行过程中要承受交替重复的载荷。固定翼飞机是一种能够使用机翼飞行的飞机,例如航空飞机,机翼由飞行器的前进空速和机翼形状产生升力。固定翼飞机不同于旋翼飞机 [1],旋翼飞机的机翼形成一个安装在旋转轴上的转子,机翼以类似于鸟的方式拍打。滑翔机固定翼飞机,包括各种自由飞行的滑翔机和系留风筝,可以利用流动的空气来获得高度。从发动机获得前推力的动力固定翼飞机(航空飞机)包括动力滑翔机、动力悬挂式滑翔机和一些地效飞行器。固定翼飞机的机翼不一定是刚性的;风筝、悬挂式滑翔机、可变后掠翼飞机和使用机翼扭曲的飞机都是固定翼飞机。大多数固定翼飞机由机上的飞行员驾驶,但有些设计为远程或计算机控制。机翼 固定翼飞机的机翼是延伸到飞机两侧的静态平面。当飞机向前飞行 [5] 时,空气流过机翼,机翼的形状可以产生升力。
我们最不擅长分享的经历,也许是通过彼此的月刊文章或共同的滑翔出版物中彼此的冒险故事。我们已经将我们的出版物的补充副本发送给 G.F.A. 了吗?(编者注:是的!)如今,我们更经常飞越彼此的周边地区。有一次,两个俱乐部共享一个 X.C. 日转弯点,一架滑翔机在看到两架悬挂式滑翔机停在那里后继续降落。(滑翔机飞行员也会遭遇转弯点困扰。)那天晚上,他告诉我,他们已经选择了路边最好的围场,在等待接机时,他会有人可以和他聊天。那天我是一辆老式双座飞机的乘客兼飞行员。我们在第二个转弯点后就被海风挡住了。我知道还有更多共同经历的故事。由于有可能在 1996 年和 1998 年在这里举办两届世界锦标赛,因此我们不应该错过在滑翔联合会成员、GA 民众和整个社区心中树立尊重的机会。与 GFA 保持联系,作为悬挂式滑翔机构而不是仅在当地俱乐部层面寻求他们的帮助;承认他们的专业知识,可能会使我们的协会、我们的活动和我们的成员更受 GFA 机构及其成员的喜爱。有了 G. FA 的帮助及其成员的精神支持,我们应该最有可能获得,并且
○ 改装机动滑翔机并增加自动驾驶功能 ○ 利用差分 GPS 的自动着陆技术 ○ 2007 年和 2008 年在北海道大树町进行飞行测试,并自动起飞
国际滑翔科学技术组织 (OSTIV) 第 34 届大会于 2018 年 7 月 28 日至 8 月 3 日在捷克共和国霍辛举行的第 35 届 FAI 世界滑翔锦标赛 18 米、20 米和公开级赛场举行。OSTIV 大会讨论了滑翔飞行的所有科学和技术方面。2018 年大会有来自全球 10 个国家的演讲。这些贡献描述了大气对流和大气波气象领域的新知识。关于滑翔机技术的演讲包括滑翔机设计和性能、空气动力学、气动弹性、负载和推进等领域,而进一步的贡献则涵盖了培训和安全的各个方面。本届大会论文集将带领与会者完成为期一周的会议计划,并将演讲的详细摘要向公众开放。