Hamilton Standard Hydromatic 螺旋桨代表了螺旋桨设计的重大进步,为未来 50 年推进技术的进一步发展奠定了基础。Hydromatic 的设计旨在容纳更大的叶片以增加推力,并提供更快的螺距变化率和更广泛的螺距控制范围。这种螺旋桨利用施加在驱动活塞两侧的高压油进行螺距控制和顺桨(停止不工作发动机上的螺旋桨旋转以减少阻力和振动的动作),使多引擎飞机能够安全地继续使用剩余的发动机飞行。Hydromatic 于 20 世纪 30 年代末投入生产,正好赶上二战期间高性能军用和运输机的要求。螺旋桨的性能、耐用性和可靠性为美国和盟军空军的成功做出了重大贡献。战后,Hydromatic 设计允许加入其他重要功能,包括反向螺距,这通过缩短大型商用运输机的着陆滑行时间提供了另一种安全措施。其他竞争性螺旋桨,采用液压机械或电动机驱动,从未达到 Hydromatic 的可靠性和广泛应用。
1.简介 航空是最受欢迎的国际交通方式之一。为了支持日益增长的航空旅行需求,世界各地的许多机场在不久的将来都需要更高效的空中交通管理。换句话说,负责为到达的飞机分配跑道的空中交通管制员 (ATC) 承受着巨大的压力,需要管理合适的跑道和路线,让飞机准时安全降落,尤其是在拥挤的机场。许多航空管理工具使用机器学习来分析和改进空中交通管理,以保持空中交通的最高安全水平,例如机场滑行时间预测 [1]、航班延误预测研究 [2] 和航空事故预测 [3]。机器学习 (ML) 是一种有用的数据可视化和管理工具,可以快速准确地解决各种问题。在之前的 ML 研究中,K. Srijakkot 等人。证明了在不同环境和模型下变电站入侵者检测的良好性能,包括计算时间短和精度高 [4, 5]。ML 不仅在检测入侵者方面具有优势,而且在医学领域也具有优势,其中预处理和 IterNet 模型在提取视网膜血管方面表现出很高的准确性 [6]。之前的 ML 研究精度很高,适用于航空领域。为了减轻空中交通管制员操作的压力并保持空中交通服务的最高安全水平,本研究的目的是将逻辑回归算法与随机森林算法进行比较,以确定哪种算法最适合为泰国最大、最繁忙的机场素万那普机场 (VTBS) 的飞机分配跑道。
序言 根据与加拿大运输部运输发展中心签订的合同以及与联邦航空管理局的合作,APS Aviation Inc. (APS) 开展了一项研究计划,旨在推进飞机地面除冰/防冰技术。APS 测试计划的具体目标如下: • 为所有新合格的除冰/防冰液开发保持时间数据; • 评估拟议航空航天标准 5485 中规定的实验室霜冻耐久性测试参数; • 评估前几个冬季的天气数据,以确定适合评估保持时间限制的一系列条件; • 进一步评估模拟起飞过程中飞机机翼受污染液体的流量; • 比较在自然雪中和实验室雪中的耐久性; • 比较液体耐久性、保持时间和保护时间; • 比较使用国家大气研究中心热板获得的降雪率和使用速率盘获得的降雪率; • 进一步分析降雪率与能见度之间的关系; • 促进 III 型液体的开发; • 测量使用强制空气辅助系统应用的液体的耐久时间; • 进行探索性研究,包括测量所应用的 IV 型液体的温度、测量滞后时间对保持时间的影响、评估液体覆盖的有效性以及评估滑行时间对除冰保持时间的影响;以及 • 为加拿大运输部提供支持服务。该计划在 2002-03 年冬季代表加拿大运输部开展的研究活动记录在十三份报告中。报告标题如下: • TP 14144E 2002-03 年冬季飞机地面除冰/防冰液保持时间开发计划; • TP 14145E 霜冻耐久时间测试的实验室测试参数; • TP 14146E 冬季天气对保持时间表格式的影响(1995-2003 年); • TP 14147E 2002-03 年冬季飞机起飞测试计划:测试以评估清洁或部分消耗的防冰液的空气动力学损失; • TP 14148E 雪地续航时间测试:2002-03 年室内和室外数据比较; • TP 14149E 飞机防冰液在铝表面的粘附性;