2012 年 9 月,美国调查机构国家运输安全委员会 (NTSB) 根据 1993 年至 2012 年间调查的 12 起事故,向 FAA 和 EASA (21) 发出了两项安全建议 (20)。一架大型飞机的翼尖在滑行道上滑行时与另一架飞机或物体相撞。 NTSB 建议为所有大型飞机以及从驾驶舱不易看到翼尖的飞机安装摄像系统等防撞辅助设备,以帮助飞行员在滑行时确定翼尖路径。
‘水上飞机’ – 一种固定翼飞机,设计用于在水上起飞和降落,包括作为水上飞机运行的两栖飞机 ‘执照持有人’ – 水上机场的授权运营商 ‘飞机’ – 一种动力驱动的重于空气的飞机,其飞行升力主要来源于在给定的飞行条件下保持固定的表面上的空气动力学反应 ‘授权人员’ – 被授权代表巴哈马民航局行事的合格个人。 “固定平台” – 从岸边延伸到水面上并由支柱支撑的平台,用于与水上飞机并排放置,供乘客和货物上下机、加油或停车 “浮动平台” – 放置在开阔水域的平台,供水上飞机乘客或货物上下机 “水上机场” – 主要在水面上的划定区域,用于飞机全部或部分到达、离开和移动,以及地面或水上的任何建筑物和设备 “水上跑道” – 水上机场上划定的矩形区域,用于飞机沿其长度着陆和起飞 “活动区” – 机场中用于飞机起飞、降落和滑行的部分,由机动区和平台组成 “机动区” – 机场中用于飞机起飞、降落和滑行的部分,
许多人不同意 Walter Bloemhard 等人关于双体船船体滑行的问题,从采用 Mercury 双体船(最适合滑行)的船体到采用深切船体的船体,我对此感到相当不满。与此同时,在我们有更明确的证据(例如来自测试水箱的证据)之前,我们必须同意持不同意见,届时我们中的一些人将不得不改变我们的观点。然而,对许多人来说,“滑行”仅仅意味着阻力突然减小和速度加快,如果这是他们的定义,那么双体船就可以滑行。但这不是技术定义,技术定义是“滑行”由水粒子以攻角撞击船底产生的动态升力组成,无论阻力是否突然减小甚至速度是否加快。
摘要 本文介绍了一种基于视觉的着陆 (VBL) 概念,该方法整合了以下贡献:a) 利用飞行员交互来利用人类卓越的物体识别能力。这大大减少了视觉系统必须覆盖的搜索空间。飞机数据、已知情景背景和背景信息也被整合在一起。b) 一种不同的设计方法,包括多种图像处理 (IP) 算法的组合,提高了从早期进近到着陆和在不同环境条件下滑行的整个距离范围的稳健性。c) 使用此处介绍的结果进行飞机控制的视觉伺服在随附的论文中进行了展示。13 对于初步测试,已经实施了合成图像的模拟。
该测试可能不是武器系统的,但是即使它类似于轨道轰炸系统,轨道卫星抛弃了抛弃滑行的弹头,这一测试并不能保证看起来令人震惊的震惊,并且看上去很震惊,最糟糕的案例认为它是在美国圈子中产生的 - 一个分析师都建议任何中国卫星都可以携带核心的核心warde nuced warhead。这不会改变地球轨道的功率平衡。相反,面对美国军事太空技术的持续领导,这可能是一个示威。最重要的是,这样的技术并不能引入美国对中国武器脆弱性的新阶段 - 美国导弹防御从未能够完全保护美国城市免受核攻击。中国可以压倒美国弹道导弹防御系统,并以其现有的核导弹武器库持有许多美国城市“人质”。
想象一下,大型国际机场(如利雅得、开罗或法兰克福机场)遭到无人机的暴力袭击。这种袭击会是什么样子?也许是一架电池供电的遥控飞机,机头装有活塞装置,当它撞上地面目标(如滑行的商用飞机)时,会引爆数磅炸药。或者可能是一架多旋翼无人机,由硬化塑料制成,专为消费市场制造,但经过改装,可以携带炸弹投掷到等待班车的人群中。这两种无人机系统 (UAS) 都很难用肉眼观察或用雷达探测到,更不用说在击中目标之前将其击败了。这种袭击的后果会是怎样的?想象一下破坏、伤害和死亡的后果。考虑对交通网络的影响。推理政治影响和袭击后对政府的影响,以及在不可避免地剖析导致目标机场脆弱的情报、安全和运营失误之后。最终的核算结果可能会对相关人员产生难以估量的负面影响。
机场拥堵是国际空域最突出的问题之一。尤其是,增加用于滑行的地面面积容量是一项重大的后勤挑战。传统上,机场通过增加跑道和滑行道来解决容量问题。这种解决方案的副作用是增加了航空终端运营的复杂性。这增加了人力工作量,从而降低了系统的效率,限制了地面扩张的潜在好处。复杂性的增加也增加了人为失误的风险,导致潜在的危险情况。此外,滑行飞机数量的增加将大大增加燃油消耗和排放。燃料燃烧量以及二氧化碳、碳氢化合物、氮氧化物、硫氧化物和颗粒物等各种污染物的产生量会随着飞机滑行时间的增加而增加,同时也会随着油门设置、发动机运行数量以及飞行员和航空公司在延误期间关闭发动机的决定而变化。通过机场扩建来增加容量的实际困难引发了人们通过智能利用现有资源来提高机场地面活动效率的愿望。
图3描述了CJU的机场地面配置。CJU有两条交叉跑道和40个停机位。总长度为3180m的07/25跑道通常用于起飞和到达,而长度为1900m的13/31跑道很少使用。在机坪区域,有两组平行的停机位,如图4所示。由于A组和B组的后推路线相互重叠,A组停机位上的飞机在收到管制员的指令后,无需后推程序即可立即开始滑行。CJU的一个主要特点是机坪区域周围存在瓶颈。由于滑行道有限且机坪区域狭窄,如果滑行道被后推或滑行的飞机占用,其他飞机应留在指定的停机位上。因此,起飞顺序几乎与机坪退出顺序相同,这不能反映在预定起飞时间前有足够时间的飞机的优先权。 CJU 在出发方面的问题之一是交通管理计划 (TMI)。TMI 是一种经常发布的出发限制,原因是
使用外部电动牵引装置滑行的飞机可以显著减少地面作业产生的二氧化碳 (CO 2 ) 排放量。我们开发了一个离散事件模拟和成本模型来调查滑行道拥堵情况,并制定了使用电动牵引车 (e-tractors) 的综合等效年成本 (EAC) 估算。该模型结合了碰撞和冲突避免以及牵引服务中断。实验确定了产生最低 EAC 的电动牵引车数量。案例研究考虑了蒙特利尔-特鲁多国际机场的三种电动滑行方案。我们的研究结果表明,当电动牵引车的容量与需求一致时,在减少燃料消耗和二氧化碳排放方面具有巨大的潜力,对滑行时间的影响有限。然而,高度的不确定性阻碍了关于成本效益的明确结论。建模方法可以根据正在进行的现场测试数据以及来自航空公司、机场和代理机构的输入进行更新,并用于测试新的滑行策略、制定电子牵引车实施计划以及为资本预算流程提供信息。
两项研究(使用波音 777 和 737 模拟器)检查了机组人员在低能见度滑行操作中使用增强型飞行视觉系统 (EFVS) 的情况。25 名机组人员在以下组合下完成了 21 个短距离滑行场景:跑道视距(RVR:300、500 和 1000 英尺);平视显示器上的 EFVS(开/关);机场基础设施 - 3 个级别。使用 EFVS 产生的路线偏差较少,大多数是在 300 英尺 RVR 处使用边灯和标准中心线或使用 LVO/SMGCS“增强功能”(没有中心线灯)的路线。转弯角度越大、能见度越低,行驶速度越慢。机组人员大多数时候都能检测到右侧障碍物,检测到左侧障碍物的几率是右侧障碍物的两倍。无论是否使用 EFVS,机组人员在大转弯(>90 度)和右转弯时路线偏差较大,可能是因为转弯时失去了视觉参考。提供了有关 EFVS 对低能见度滑行的好处和局限性的建议,并建议进行进一步研究。