15. 补充说明 由船舶结构委员会主办,由其成员机构联合资助 16. 摘要 缺乏有关流体动力载荷的信息是高速滑行艇结构设计的一个障碍。该项目的目标是开发和验证一种实用的方法,使用时域模拟来推动高速滑行艇的结构设计。模拟器通过计算二维力并积分结果来求解运动方程,从而预测滑行艇的运动。使用 Smiley (1951) 的模型将截面压力扩展为横向压力分布,然后将其转换为有限元法 (FEA) 载荷图以进行结构分析。将结果与玻璃纤维滑水艇的测量数据以及 Jones 和 Allen (1972) 的数据进行了比较。
美国特种部队在执行任务时使用高速滑行艇。这些船只的运行,特别是在波涛汹涌的大海中,会使乘员遭受严重的机械冲击,这会导致急性和慢性损伤的发生率显著增加。尽管许多政府和民间组织在过去十多年里对这个问题的各个方面进行了研究,但舰队尚未实施有效的解决方案。为了解决这个问题,加利福尼亚州圣地亚哥的海军特种作战司令部指挥官向麻省理工学院海洋工程系转发了一份请求,要求对该问题进行研究。本论文的目的是对这个问题进行全面分析,研究可以缓解问题的方法,并开发和验证冲击缓解系统的实验室设计、测试和评估方法。首先,对船体和航道之间的流体动力学相互作用以及这种相互作用如何导致机械冲击的产生进行理论和实证研究。在典型操作条件下,从船只上获取实际加速度数据,并从以前的研究中获取其他类似数据。第二,研究机械冲击和振动导致急性和慢性损伤的机制。回顾过去的人体和动物试验,以及人体的传递性和机械阻抗信息。这类信息以及其他伤害数据汇编研究有助于现有的伤害预测。第三,研究可以减轻高速船上机械冲击暴露的方法。确定可以实现冲击缓解的界面(例如船体-航道),并讨论现有或概念上的冲击缓解系统。此外,还讨论了减少冲击暴露影响的操作方法(例如培训)。最后,制造了一个实验室跌落台装置,用于冲击缓解系统的设计、测试和评估。该测试装置通过成功再现高速船上经历的冲击事件以及出色的可重复性和可控性得到验证。
美国特种部队在执行任务时使用高速滑行艇。驾驶这些船只,特别是在波涛汹涌的大海中,会使乘员遭受严重的机械冲击,这会导致急性和慢性损伤率显著增加。虽然许多政府和民间组织在过去十年或更长时间里研究了这个问题的各个方面,但舰队尚未实施有效的解决方案。针对这一问题,加利福尼亚州圣地亚哥的海军特种作战司令部指挥官向麻省理工学院海洋工程系转发了一份请求,要求对该问题进行研究。本论文的目的是对问题进行全面分析,研究可以缓解问题的方法,并开发和验证冲击缓解系统的实验室设计、测试和评估方法。首先,对船体和航道之间的流体动力学相互作用以及这种相互作用如何导致机械冲击的产生进行了理论和实证研究。在典型运行条件下从船舶行驶时获取实际加速度数据,并从以前的研究中获得其他类似数据。其次,研究机械冲击和振动导致急性和慢性损伤的机制。回顾了过去的人体和动物测试,以及有关人体的传递性和机械阻抗的信息。此类信息以及其他伤害数据汇编研究有助于现有的伤害预测。第三,研究了减轻高速船上机械冲击暴露的方法。确定了可以实现冲击缓解的界面(例如船体-航道),并讨论了现有或概念性的冲击缓解系统。此外,还讨论了减少冲击暴露影响的操作方法(例如培训)。最后,制造了一个实验室跌落台装置,用于冲击缓解系统的设计、测试和评估。该测试设备通过成功再现高速船上经历的冲击事件以及出色的可重复性和可控性得到了验证。
