摘要 舰载机滑跃起飞飞行条件特殊、飞行速度低,对飞行安全构成威胁。处理该多学科交叉问题,需要综合考虑航母运动、飞机动力学、起落架和海况风场等因素。针对舰载机滑跃起飞的具体海军作战环境,建立了涉及舰载机、飞机、起落架运动实体,涉及起飞指令、控制系统和甲板风扰动的多体系统一体化动力学仿真模型。基于Matlab/Simulink环境,实现了多体系统仿真。通过舰载机滑跃起飞算例仿真,验证了模型的有效性和结果的合理性。该仿真模型与软件适用于舰载机起飞性能、飞行品质与安全、起落架载荷影响、航母甲板参数等多学科交叉问题的研究。ª 2013 CSAA & BUAA。由 Elsevier Ltd. 制作和托管。保留所有权利。
航母上可用的着陆区在所有六个自由度上处于连续运动状态。航母的滑跃甲板、飞行甲板、船体和上层建筑与迎面而来的风的流场相互作用,从而在航母后方形成湍流。这种“湍流效应”非常危险,过去曾造成过各种事故。为了补充印度理工学院德里分校正在进行的航母环境流体动力学研究工作,本研究调查了滑跃甲板和上层建筑对通用航空母舰 (GAC) 周围流动的影响。进行了计算流体动力学 (CFD) 研究以模拟气流尾流并使用滑跃甲板建立基线。随后,进行了进一步的研究以分析尾流对航母几何形状变化的敏感性。引入滑跃甲板会产生大部分湍流,这是飞行员在进近时在船尾遇到的。通过以各种方式优化滑跃甲板几何形状,可以大大减少湍流。
首先,我必须感谢受邀为“滑流”做出贡献。作为一名非飞行员,我很荣幸有机会与我们海军舰队航空兵的(前任和现任)成员进行交流。距离“澳大利亚皇家海军”(RAN)这个新国家被授予英联邦海军部队已有近 100 年。在过去的这些年里,无论是在和平时期还是在战争时期,RAN 都多次应邀前往我们的国家。每次我们都做好准备,为我们有充分理由自豪地享受的持续自由和民主做出重大贡献。2014 年,在我们参加第一次冲突一百周年之际,我相信 RAN 将处于能力的分水岭时刻。五年后,海军将投入使用两级战舰,为澳大利亚国防军提供显著增强甚至全新的能力。从 2014 年开始,我相信澳大利亚皇家海军将在几十年来首次实现真正平衡的兵力结构和先进的作战能力——可以说是自我们成立以来首次。海军将在 2014 年迎来三艘霍巴特级 7,000 吨级宙斯盾防空驱逐舰中的第一艘。此外,27,000 吨级两栖舰(直升机登陆舰 - LHD)HMAS CANBERRA 将于同年交付。每个级别的战舰都将为澳大利亚国防军提供一套能力,这将大大增强我们在联合任务组环境中有效作战的能力。在霍巴特级中,我们将能够大大拓宽我们在区域空战中的视野,并引入令人印象深刻的指挥和控制 (C2) 能力以及先进的水面、水下和打击系统。堪培拉级将标志着澳大利亚持续两栖或远征作战能力的出现。引入海上联合 C2 能力、用于船岸“连接器”的可淹没对接以及用于多飞机作战的令人印象深刻的航空设施将带来挑战和显著优势。凭借升级后的 COLLINS 级潜艇、新型多船员 ARMIDALE 级巡逻艇、HUON 级扫雷艇和扫雷潜水队、补给舰、大大增强的 ANZAC 级护卫舰、不断发展的海洋科学部队,当然还有我们的舰队航空兵,澳大利亚皇家海军将同时拥有超越以往任何时候的广度和深度。澳大利亚将拥有新一代海军 (NGN)。五年内有很多事情要做,我期待您的支持和贡献,以充分实现我们的 NGN。我们有很多值得兴奋的事情。问候 S. R. GILMORE 海军少将,RAN
电荷转移的确切机制仍在研究中。旁边是电子传递,10、14、29该现象通常归因于离子电荷。2,32 - 36在水或高含量液体中,大多数固体表面都会充电。这些表面电荷自发形成,例如,通过溶液中的离子吸附,通过表面基团的质子化或去质子化或通过离子的优先溶解,从而形成静电双层(EDL)。37,38 Sosa等。 表明接触电气与液体的Zeta电位,pH和盐串联相关。 39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。 13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。 4037,38 Sosa等。表明接触电气与液体的Zeta电位,pH和盐串联相关。39因此,先前的模型基于这样的假设:从接触线移动时,来自EDL的某些电荷被留在实心表面上。13最近,从理论上描述了回收接触线及其参数依赖性的这种电荷传输机制。40
2024年11月8日 — 主题、规格等 单位 数量 金额 备注 出售废油(润滑油、燃料油等) 000,000 低于保证金 总计 000,000 接受您的通知、公告、招标和合同指南、合同条款等......
摘要:热能储存系统在可再生能源的利用和开发中起着至关重要的作用。在过去的二十年里,单罐温跃层技术由于与传统的双罐储存系统相比具有更高的成本效益而受到广泛关注。本文重点阐明温跃层 TES 系统的性能指标以及不同影响因素的影响。我们收集了现有文献中所使用的各种性能指标,并将其分为三类:(1)直接反映储存热能的数量或质量的指标;(2)描述冷热地区热分层水平的指标;(3)表征温跃层罐内热流体动力学特征的指标。对这三类指标进行了详细的分析。此外,还系统讨论了相关的影响因素,包括传热流体的注入流量、工作温度、流量分配器和进出口位置。该工作提供的全面总结、详细分析和比较将为未来温跃层TES系统的研究提供重要的参考。
EngagedScholarship@CSU 为您提供免费开放的本论文。EngagedScholarship@CSU 的授权管理员已接受本论文并将其收录到 ETD 档案中。如需了解更多信息,请联系 library.es@csuohio.edu 。
Lubrizol Advanced Materials, Inc.(“Lubrizol”)希望您对此建议的配方感兴趣,但请注意,这只是一种代表性配方,并非商业化产品。在适用法律允许的最大范围内,Lubrizol 不作任何陈述、保证或担保(无论是明示、暗示、法定或其他形式),包括任何关于适销性或特定用途适用性的暗示担保,或关于任何信息的完整性、准确性或及时性的暗示担保。Lubrizol 认为此配方所基于的信息和数据是可靠的,但配方尚未经过性能、功效或安全性测试。在商业化之前,您应彻底测试该配方或其任何变体,包括配方的包装方式,以确定其性能、功效和安全性。您有责任获得任何必要的政府批准、许可或注册。本文中包含的任何内容均不得视为未经专利所有者许可而实施任何专利发明的许可、建议或诱导。与此配方相关的任何索赔可能并非在所有司法管辖区都获得批准。安全处理信息不包括安全使用所需的产品安全信息。操作前,请阅读所有产品和安全数据表以及容器标签,了解安全使用和物理及健康危害信息。您可从路博润代表或经销商处获取此配方路博润产品的安全数据表。
由于其起飞和着陆能力(如 STOVL 或 V/STOL)而很有前途。一个经验教训是,升力风扇飞机因多种原因而很有前途,例如 (i) 短距或垂直起飞和着陆,(2) 近终端起飞和进近模式,(3) 上升和离开飞行性能,(4) 机动性,(5) 设计权衡,例如机翼设计用于巡航并且不受起飞和着陆的影响,(5) 地面设施的优势,例如滑跃起飞,(6) 总体系统节省,例如不需要航空母舰转向风中,以及 (7) 更多其他。