摘要:确保滚动轴承的平稳运行需要精确的故障诊断。特别是,在不同的工作条件下识别故障类型在实践工程中具有重要意义。因此,我们提出了一种加固集合方法,用于在不同的工作条件下诊断滚动轴承断层。首先,设计了一个加固模型来选择最佳的基础学习者。分层随机抽样用于从原始训练数据中提取四个数据集。强化模型分别由这四个数据集培训,我们获得了四个最佳基础学习者。然后,稀疏的ANN被设计为集合模型,并且可以成功识别可变工作条件下的故障类型的增强学习模型。进行了广泛的实验,结果证明了所提出的方法比其他智能方法具有优越性,具有显着的实践工程益处。
人工智能(AI)在数据驱动的状态监测研究中不断升级。传统的基于专家知识的预测和健康管理(PHM)过程可以借助各种AI技术(例如深度学习模型)变得更加智能。另一方面,当前基于深度学习的预测存在数据缺失问题,尤其是考虑到实际工业应用中组件的不同操作条件和退化模式。随着仿真技术的发展,基于物理知识的数字孪生模型使工程师能够以较低的成本访问大量仿真数据。这些模拟数据包含组件的物理特性和退化信息。为了准确预测退化过程中的剩余使用寿命(RUL),本文基于现象学振动模型构建了轴承数字孪生模型。使用领域对抗神经网络 (DANN) 来实现模拟和真实数据之间的领域自适应目标。将模拟数据视为源域,将真实数据视为目标域,DANN 模型能够在没有任何标记信息先验知识的情况下预测 RUL。基于实际轴承运行至故障实验的验证结果,与最先进的方法相比,所提出的方法能够获得最小的 RUL 预测误差。
注意:作者已授予非独家许可,允许加拿大图书馆和档案馆在任何地方复制、出版、存档、保存、保存、通过电信或互联网向公众传输、出借、分发和出售论文。世界各地,用于商业或其他目的,以缩微形式、纸质、电子和/或其他格式。