摘要:在工业4.0及以后的时代,球轴承仍然是工业系统的重要组成部分。滚珠轴承的失败会导致工厂停机时间,效率低下的操作和大量的维护费用。尽管常规的预防性维护机制(例如基于时间的维护,常规检查和手动数据分析)提供了一定程度的预防故障,但它们通常是反应性,耗时和不精确的。另一方面,机器学习算法可以尽早检测异常,处理大量数据,几乎实时不断改进,进而大大提高了现代工业系统的效率。在这项工作中,我们比较了不同的机器学习和深度学习技术,以优化滚珠轴承系统的预测维护,这反过来又可以降低停机时间并提高当前和未来的工业系统的效率。为此,我们评估和比较分类算法,例如逻辑回归和支持向量机,以及随机森林和极端梯度提升等集合算法。我们还探索和评估长期记忆,这是一种复发性神经网络。我们根据这些模型的准确性,精度,召回,F1分数和计算要求评估和比较这些模型。我们的比较结果表明,就整体绩效和计算时间而言,极端梯度提升可以提供最佳的权衡。对于2155个振动信号的数据集,极端梯度提升的精度为96.61%,而训练时间仅为0.76 s。此外,在获得大于80%的精度的技术中,极端梯度提升还提供了最佳的准确性与计算时间比率。