符号 d tgt 到目标的欧几里德距离(斜距) DC 飞机与图像中心之间的地面半径 DX Y 轴截距与目标之间的地面距离 DY 飞机与 Y 轴截距之间的地面半径 DT 飞机与目标之间的地面半径 F b 机身框架连接到飞机 F c 相机框架连接到相机 F 中心 向心力 F n 北/东/下框架(惯性) g 地球重力加速度 h AGL 目标上方高度(地面以上) h des 所需轨道高度 KD φ 滚转内环微分增益 KD θ 俯仰内环微分增益 KD 外环微分增益 KI h 高度保持积分增益 KP h 高度保持比例增益 KP 外环外环控制器比例增益 KP ˙ ψ 转弯协调器比例增益 KP φ 滚转内环比例增益 KP θ 俯仰内环比例增益 LC 飞机与图像中心之间的斜距 LY 飞机与 Y 轴截距之间的斜距 LT飞机与目标之间的斜距 m 飞机质量 PE 位置向东 PN 位置向北 p 飞机倾斜率 q 飞机俯仰率 r 飞机航向(偏航)率 R 实际轨道半径 ˙ R 实际半径率 R des 所需轨道半径 S x 相机水平分辨率 S y 相机垂直分辨率 t 时间 VA 飞机空速 V CM / e 飞机相对于惯性系的速度 VW / e 风相对于惯性系的速度 V tgt / e 目标相对于惯性系的速度 W 飞机重量 X tgt 目标的 X 坐标 Y tgt 目标的 Y 坐标
爬升和下降(“油门/俯仰”):控制模型的爬升和下降。 偏航:模型绕垂直轴的运动;直升机向右或向左旋转。 升降舵:模型绕横轴的运动,向前或向后飞行 滚转:模型绕纵轴的运动,向右或向左横向运动 模式 1:相对于操纵杆运动的控制运动功能分配。在这种情况下,总距/电机速度(油门)和滚转由右侧操纵杆控制;俯仰轴和尾桨由左侧操纵杆控制。 模式 2:相对于操纵杆运动的控制运动功能分配。在这种情况下,总距/电机速度(油门)和尾桨由左侧操纵杆控制;俯仰轴和滚转由右侧操纵杆控制。 双速率:可切换控制运动的行程减少。 绑定:在发射器和接收器之间建立无线电链路。
摘要 无尾飞机固有偏航控制功率有限和方向稳定性差的缺点。为了在低成本和低风险的无尾配置早期设计过程中解决这些问题,本文提出了一种创新的实验方法,将动态缩放模型安装在风洞中的三自由度装置上,以验证控制律并定量评估飞行品质。推导了无尾演示器在装置上的运动方程,然后对装置约束模型和自由飞行模型的横向飞行动力学进行了比较。根据缩放修正的飞行品质标准,完成了偏航和滚转运动控制增强系统的构建。通过在不同空速和攻角下的稳定飞行员在环飞行证明了所设计的控制律的有效性。通过应用多步机动进行低阶等效系统辨识来评估所实现的闭环飞行品质。尽管在开环情况下偏航会表现出严重的不稳定性,但在低攻角下,荷兰滚模式的闭环飞行品质可以提高到 1 级。
1997 年 1 月 9 日,美国东部标准时间 1554 时左右,一架由 COMAIR Airlines, Inc. 运营的巴西航空公司 EMB-120RT(N265CA)3272 号航班在密歇根州门罗附近发生非指令性滚转偏航后,在快速下降过程中坠毁。3272 号航班根据《联邦法规》第 14 篇第 135 部分的规定运营,是一架定期国内客运航班,从肯塔基州卡温顿的辛辛那提/北肯塔基国际机场飞往密歇根州底特律的底特律大都会/韦恩县机场。该航班于 1508 时左右从肯塔基州卡温顿起飞,机上有 2 名机组人员、1 名乘务员和 26 名乘客。无人生还。飞机被地面撞击力和事故后起火摧毁。事故发生时,仪表气象条件占主导地位,3272 航班正在按照仪表飞行规则飞行计划运行。
Beaver 中包含的 KAP 140 自动驾驶仪系统是一种基于速率的数字自动驾驶仪系统,可提供平稳的性能和仅在更昂贵的自动驾驶仪中发现的增强功能。该系统是霍尼韦尔开发的首款此类系统,将数字技术和可靠性带入轻型飞机驾驶舱。KAP 140 滚转轴功能包括机翼调平器、航向选择和 VOR/LOC 拦截和跟踪。KAP 140 还可以耦合到 GPS 和 RNAV 接收器。滚转速率信息来自转弯协调器。俯仰轴功能包括垂直速度、下滑道和高度保持以及高度预选选项。俯仰信息来自压力传感器和加速度计。KAP 140 自动驾驶系统独立于飞机的人工地平线运行。因此,如果真空系统发生故障,自动驾驶仪将保留侧倾稳定性和所有垂直模式。Beaver 版本中的 KAP 140 功能
本文介绍了在非参数不确定性(阵风和风扰动)下悬停飞行的垂直起降 (VTOL) 无人机 (UAV) 的滚转运动的最佳滑模控制 (SMC) 和最佳超扭转滑模控制 (STSMC) 的设计。本文对受控滚转运动进行了稳定性分析,并基于 Lyapunov 定理证明了渐近误差收敛。据此,针对受不确定性影响的飞机系统制定了控制律。为了避免在选择设计参数时进行反复试验并提高 SMC 和 STSMC 的性能,建议使用灰狼优化进行调整。基于数值模拟,对最佳和非最佳控制器以及最佳 SMSTC 和最佳 SMC 进行了比较研究,比较了跟踪误差和控制信号中的抖动行为。数值模拟表明,GWO 可以提高 SMC 和 STSMC 的性能。此外,在跟踪误差和控制信号抖动效应方面,最佳 STSMC 比最佳 SMC 具有更好的动态性能。
假设飞行员俯冲投掷弹药,并让飞机在垂直于地面(无滚转)的平面上飞行(图 1a 和 1b)。P 边和 R 边之间的夹角是飞行路径角或俯冲角 e。如果飞机以恒定的“G”载荷飞行,其飞行路径等于 e 的余弦,即从滚转到撞击地面。应该认识到,除了“飞行时间零的射弹”或瞄准线在 P 边上方的弹药之外,飞机撞击点无论风向如何都在目标之外。这是由于重力、空气阻力或射弹阻力以及提供分离的弹射力。这些变量确定或定义了固定的炸弹射程,这是“破折号 34”表格中显示的所有弹道数据的基础。作为战斗机飞行员,我们对飞行路径数据下方的俯仰角至关重要。这些数据实际上只不过是由炸弹射程、释放高度定义的三角形的角度解。和俯冲角度。用投掷器瞄准释放点。在 P 侧下方某处。除了理论上如上所述。并且所有参数都满足。人们应该理所当然地期待一个靶心。让我们假设攻角。~。已经解决了
摘要 无尾飞机固有的偏航控制功率有限和方向稳定性差的缺点。为了在低成本和低风险的无尾配置早期设计过程中解决这些问题,本文提出了一种创新的实验方法来验证控制律并定量评估飞行品质,该方法使用安装在风洞中三自由度试验台上的动态缩放模型。推导了试验台上无尾演示器的运动方程,然后对试验台约束模型和自由飞行模型之间的横向飞行动力学进行了比较。根据缩放修正的飞行品质标准,完成了偏航和滚转运动控制增强系统的构建。通过在不同空速和攻角下的稳定飞行员在环飞行证明了所设计的控制律的有效性。通过应用多步机动进行低阶等效系统辨识来评估所实现的闭环飞行品质。尽管在开环情况下偏航会表现出严重的不稳定性,但荷兰滚模式的闭环飞行品质在低攻角下可以提高到 1 级。
摘要。2016 年,风能占美国所有发电量的 5.6%。大部分发展发生在农村地区,那里有利于利用风能的开放空间也为通用航空机场提供服务。因此,美国近 40% 的风力涡轮机都位于小型机场 10 公里范围内。风力涡轮机通过从大气中提取动量来发电,产生以风速不足和湍流增加为特征的顺风尾流。最近,涡轮机尾流对小型飞机构成危险的担忧已被用来限制风电场的发展。在此,我们使用公用事业规模涡轮机尾流的大涡模拟 (LES) 评估小型飞机的滚动危险。计算假设飞机以各种方向横穿尾流时风产生的升力和随后的滚转力矩。探讨了稳定和中性分层的情况,稳定情况代表了可能的最坏情况,因为较低的环境湍流允许更长时间的尾流持续。在这两种情况下,假设飞机在下行尾流和横行尾流横穿过程中经历的滚转力矩中只有 0.001% 会导致滚转风险增加。
滚转和偏航,以及飞机中这些状态的控制,是通过分别改变对升降舵、副翼和方向舵的指令信号来实现的。在本文中,我们仅考虑飞机的两种控制运动,即纵向和滚转运动。这两个控制面是用不同的智能控制器设计和实现的。飞机的这两种运动在飞行过程中很重要,在此期间飞机会从一种状态过渡到另一种状态。为了控制飞机的纵向和滚转运动,分别使用了一组称为升降舵和副翼的控制面。升降舵是位于固定翼飞机后部的可移动控制面,铰接在水平稳定器的后缘,与主翼平行运行,导致飞机旋转,导致飞机爬升和下降,并从机翼获得足够的升力,使飞机以各种速度保持平飞。升降舵是可移动的控制面,可以上下移动。如果升降舵向上旋转,则会减少尾部的升力,导致尾部降低而机头抬高。如果升降舵向下旋转,则会增加尾部的升力,导致尾部抬高而机头降低。降低飞机机头会增加前进速度,而抬高机头会降低前进速度 [1]。