低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新风扇可在极低的噪音水平下移动大量空气,并且几乎无振动运行,在满负荷和部分负荷条件下均可实现极低的噪音水平。卓越的可靠性 AWS 冷水机组根据其尺寸具有两个或三个真正独立的制冷剂回路,以确保最大程度地保证任何维护(无论是否计划)的安全性。它们采用坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过完整的工厂运行测试,以实现优化的无故障运行。无限容量控制 冷却容量控制通过微处理器系统控制的单螺杆非对称压缩机无限可变。每个单元都具有从 100% 到 12%(两个压缩机单元)的无级可变容量控制,再到 7%(三个压缩机单元)。这种调节允许压缩机容量精确匹配建筑物冷却负荷,而不会产生任何蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,使用压缩机负载阶跃控制时,与建筑物冷却负载相比,部分负载下的压缩机容量会过高或过低。结果是冷却器的能量成本降低,特别是在冷却器大部分时间运行的部分负载条件下。无级调节装置具有阶跃调节装置无法比拟的优势。卓越的控制逻辑 新的 MicroTech III 控制器提供了易于使用的控制环境。控制逻辑旨在提供最大效率,在异常操作条件下继续运行并提供装置运行历史记录。能够随时跟踪系统的能量需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有通过使用无级调节装置才能满足系统的最佳运行条件。最大的好处之一是易于与 LonWorks、Bacnet、以太网 TCP/IP 或 Modbus 通信接口。
在屋顶安装太阳能电池板有什么好处?对于通常通过 WAP 安装的系统(约 5.0 千瓦或 kW),在系统的使用寿命内(至少 25 至 30 年),您每年可以节省 800 多美元的电费(按当今的电费计算)。系统产生的可再生电力还意味着您的电力公司将通过发电厂燃烧煤炭或天然气产生更少的污染和二氧化碳。太阳能系统是否有任何维护费用?应该没有维护费用。系统的所有主要组件(电池板本身、将系统的直流电转换为家用交流电的逆变器以及固定电池板的机架系统)都有很长的保修期,通常为 25 年。我的太阳能系统有保修吗?是的!除了组件(电池板、逆变器和支架系统)的保修期通常为 25 年之外,电池板还将享有生产保修,保证系统产生的电量在 25 年左右的时间内不会减少超过非常小的量。根据系统出价,还将有长达 10 年的工艺保修。我需要做什么来维护太阳能系统?屋顶安装的太阳能系统中没有活动部件,不需要维护。作为太阳能安装的一部分,您将通过应用程序访问系统的详细实时生产数据。如果您发现它没有按预期发电,您应该联系安装人员。我需要清洁太阳能电池板吗?通常,定期降水可以充分清洁太阳能电池板。长期干旱期间可能积聚的少量灰尘不会显著影响系统性能。话虽如此,如果在长期干旱期间太阳能电池板显得特别脏,那么只需用软管中的定向水流冲洗即可。我需要清除太阳能电池板上的积雪吗?在大多数情况下,积雪会在降雪后几小时到几天内从太阳能电池板上融化。通常,由于积雪覆盖,您的系统不会损失大量产量,尤其是因为冬季的太阳能产量低于一年中其他时间。融化所需的时间主要取决于雪量、气温、天气晴朗程度以及屋顶和太阳能系统的坡度。如果降雪量很大,并且您的屋顶坡度相对较低和/或降雪后天气极冷或多云,您可能希望用长柄雪耙小心地清除太阳能电池板上的积雪,以便您的系统更快地恢复满负荷生产。我的太阳能系统可以持续多长时间?如上所述,您的系统主要部件的保修期可能为 25 年。可以合理地预期系统至少能继续发电 30 年。太阳能系统寿命结束时会发生什么?系统寿命结束时(30 年以上),最终需要将其从屋顶上拆除,最有可能是在您家重新铺屋顶时。系统中材料的回收价值很可能意味着这将是一项廉价的操作。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
执行摘要 2024 年 12 月 — 经济复原力使通胀正常化变得复杂化 相对于疫情后的扭曲,国民经济似乎有望继续正常化,但恢复稳定、低通胀的运动仍未完成。以 GDP 衡量的产出增长速度继续放缓,但仍高于经济的长期潜力。因此,由于经济继续面临劳动力和产能限制,通胀压力持续存在。预测者的共识是,2024 年实际 GDP 增长率为 2.7%(年均),而 2023 年为 2.9%。作为参考,趋势增长(反映经济增长接近其潜力,从而与通胀回归政策制定者 2% 的目标相一致)通常被认为接近 1.8%。由于劳动力市场接近满负荷,全国失业率为 4.1%,在增长超过潜力的情况下,继续降低通胀可能会很困难。在撰写本文时,对当前季度增长 (~2.6%) 的跟踪预测再次超出了预测者的估计。11 月的总统和国会选举将对国家经济前景产生重大影响。虽然在获得更详细的细节之前,对其中许多措施进行经济“评分”为时过早,但仍有可能看到其对前景的明显经济影响。特别是,关税的扩大、更严格的移民政策、税收改革/削减和放松管制与现状存在重大差异,而现状在选举前已广泛为共识估计提供了依据。OEA 对这些潜在措施的影响进行非政治性的评估——既不是好也不是坏,而是影响前景的因素。在下一届政府优先事项的时间和细节得到更明确的界定之前,可以谨慎地说,中期经济尾部风险已经增加;或者换句话说,相对于选举前的预测,结果的潜在分布已经扩大。从州一级来看,俄勒冈州的经济目前表现中等健康。产出增长落后于全国统计数据,但显示出一些重新加速的迹象。净就业创造仍然为正,但令人担忧的是,就业创造仅集中在少数几个行业类别。俄勒冈州的经济活动将极易受到上述国家优先事项的影响。俄勒冈州的劳动力市场在后疫情时代表现出韧性,根据劳动力参与率或就业人口比率等指标,劳动力利用率处于高水平。因此,该州将需要依靠移民(来自其他州或国际)来提供足够的额外劳动力。关税将对俄勒冈州经济的关键工业支柱产生极为重大的影响,包括木材、农业、科技/半导体和服装。税收改革将对整体增长前景产生重大影响(特别是如果减税没有资金支持,从而可能产生重大的财政刺激),但它们也可能影响俄勒冈州与国家经济的联系,例如如果 SALT 扣除上限被修改。
恩菲尔德伞下所有区域的冠冕。哈德利·伍德(Hadley Wood)在乡村和城市的能力上是独一无二的,通过开发这片土地,您将消除其性格和吸引力的心脏。所讨论的区域具有很高的历史性价值,并且是Barnet战役的所在地。它紧接在保护区,兰开斯特公国在该区域起着重要作用并增强了整个区域。它在该地区的野生动植物和生物多样性中也有重要的作用。我经常观看狐狸,兔子,muntjac鹿,猫头鹰,蝙蝠以及许多筑巢和居住在该地区的许多不同种类的鸟类。仅在去年几次,我才看到草蛇和可能的其他类型的蛇。肯定在一个在这个国家和许多其他国家亵渎性质的社会中,我们应该保护我们的绿色空间并将其保存在后代。当然,对我来说似乎很荒谬的是,理事会希望在历史上和对自然界如此重要的重要性上破坏这种重要性的地方,而没有先用尽对他们开放的选择,对理事会领土内的许多未开发的棕色野外遗址,甚至没有咨询Hadley Wood邻里计划,该计划是在公众的公开式宣传和Enfield Counce官员之后被采用的。该地区的绿色动物群,多棵树和树篱是碳汇,在重新氧化我们已经从M25中污染的空气等方面起着重要作用。这是不可原谅的。鉴于这一点到底,理事会仍然可以提出发展?最重要的是,您拥有如此自然的美丽,这将被进一步的发展,后代和一直以来都被破坏。理事会拥有绿色带研究,MOL在绿色带的五个目的中将该地点评为“强大”,而理事会自行的最终报告将开发造成的危害评为“非常高”,并在报告中指出“现场是隔离”。在我非常强烈的感觉之上,如上所述,该理事会在这种情况下还没有考虑过许多其他领域。新月西部和周边地区的当地交通状况已经过度伸展,最大程度的汽车和交通状况,部分原因是车站,部分原因是该地区的整个饱和交通状况。考虑使用该区域增加每天可能增加400辆其他车辆,这是荒谬的。(我认为大多数家庭至少有2或4辆车,这是公平的。)现在几乎不可能在高峰时段加入该地区的主要鸡舍路和该地区的其他主要道路,更不用说如果您进一步增加了交通。该地区的设施不足以支持大型发展。没有医生的手术,没有邮局,附近没有超市商店或杂货店商店,当地学校已经满负荷。没有可以谈论的公共交通系统,为希望在其他领域访问这些服务和便利设施的任何人提供服务。火车站虽然为通勤者服务井,但并不能为任何居民提供当地交通工具。有一项小型公交服务,可以在上午10点至下午2点之间运行,但仅此而已。除了上述观点外,理事会还有其他更多的技术问题。我已经在您的表示形式中勾选了适用于我的反对的盒子。我希望参加考试听证会:否
2020 年 3 月 2 日 尊敬的 Kathleen A. Theoharides,秘书 能源和环境事务执行办公室 收件人:MEPA 办公室 100 Cambridge Street, Suite 900, Boston, Massachusetts 02114 事由:弗雷明翰洛根快线扩建项目,马萨诸塞州弗雷明翰 尊敬的 Theoharides 秘书和 Kim 主任: 我谨代表马萨诸塞州港务局 (Massport) 提交一份关于扩建现有弗雷明翰洛根快线设施的扩展环境通知表 (EENF) 供您审阅。正如我们在最近的洛根机场环境状况和规划报告 (ESPR, EEA #3247) 中概述的那样,Massport 的洛根快线网络是我们高乘载车辆 (HOV) 战略的核心,用于乘客和员工进出洛根机场的地面通道。洛根快线目前是联邦第七大交通系统,对减少整个市场区域的出行、拥堵和排放至关重要。弗雷明翰洛根快线站点在服务 MetroWest 地区方面非常有效,估计每年可减少弗雷明翰地区与洛根机场之间交通高度拥堵的马萨诸塞州收费公路 (I-90) 沿线 450,000 多次出行。在未来十年内,我们预计每年可减少的出行次数将超过 100 万次。这只有在弗雷明翰增加停车位,并在新停车位开放后将特快巴士的每小时班次从 2 班增加到 3 班的情况下才能实现。该位置的原始洛根快线设施建于 1995 年;该设施于 2015 年被目前的综合航站楼和车库结构所取代,共计 1,082 个停车位。新车库设施一经开放,在交通高峰期就几乎满负荷运行,该位置的停车需求继续呈现强劲增长,无论是航空乘客还是洛根机场员工。Massport 目前的计划是将车库在现有占地面积内扩建至其最大结构容量七 (7) 层。此次扩建是在 2014 年 MEPA 审查过程 (EEA #15144) 中设想的,其中描述了地基是为未来的水平而设计的。在现有的占地面积和结构容量内,总共可以添加 998 个额外的停车位。即使有了这些新的停车位,Massport 预计仍将继续运营 Flutie Pass 沿线的相邻卫星溢流停车场,该停车场可容纳 565 个停车位。通过建造这个设施并增加 Massport 系统范围内的 Logan Express HOV 容量,我们估计 Logan Express 的使用率将能够从 2019 年的每年近 200 万用户增加一倍,达到每年超过 400 万用户。这意味着区域车辆行驶里程 (VMT) 和相关车辆排放量将显著减少。温室气体 (GHG) 分析表明,扩建车库以提供额外的 998 个停车位和扩展服务,该项目将减少温室气体排放
市场研究公司 Omdia 在其《SiC 和 GaN 功率半导体报告——2020 年》(见第 74-75 页)中指出,受混合动力和电动汽车 (HEVs/EVs)、电源和光伏 (PV) 逆变器需求的推动,碳化硅 (SiC) 和氮化镓 (GaN) 功率半导体市场预计将在 2021 年超过 10 亿美元,因为它正迅速从初创公司主导的行业发展为由大型知名功率半导体制造商主导的行业。例如,三菱电机现已推出其第二代全 SiC 功率模块,采用新开发的低功耗工业用 SiC 芯片(第 15 页)。此外,在美国空军研究实验室 (AFRL) 的一项第一阶段小型企业技术转移研究 (STTR) 项目的资助下,结构材料工业公司 (SMI) 开发了一种用于 4H-SiC 的低温化学气相沉积 (CVD) 工艺,可实现用于高压功率器件的厚外延层的更高速率生长(同时缩短工艺周期和设备磨损)(第 14 页)。与此同时,SMI 还与纽约州立大学 (SUNY) 奥尔巴尼理工学院合作,获得了美国能源部授予的第一阶段 STTR 合同,以开发普遍的制造基础设施 - 包括改善大晶圆金属有机化学气相沉积 (MOCVD) 均匀性 - 用于在高电流和高电压 (>20A/>600V) 下运行的 GaN,用于电动汽车电力电子设备(第 16 页)。正在推进 GaN 器件功能的制造商包括 EPC,该公司已推出其最新的 100V eGaN FET 系列,面向自动驾驶汽车的 LiDAR 等应用(第 18 页)。GaN 器件在电源应用(例如消费电子产品的快速充电器)中的应用持续激增(尤其是随着性能的提高)。例如,在 Apple iPhone 12 预计于今年晚些时候发布之前,移动配件品牌 Spigen PowerArc 已在新款 20W ArcStation Pro 中使用了 Navitas 的 GaNFast 电源 IC。与此同时,中国的 OPPO 已采用 GaNFast 电源 IC,用于据称是最小、最薄、最轻的 110W 智能手机、平板电脑和笔记本电脑快速充电器(第 19 页)。除了通过向制造合作伙伴 Nexperia 授予许可来增加收入外,Transphorm 还扩展了其高压 GaN 电源转换设备产品组合,旨在推动快速充电电源适配器的普及(第 20 页)。GaN Systems 宣布推出一款新的参考设计,用于包括手机和笔记本电脑在内的消费电子产品中的高功率密度 65W 充电器(第 21 页)。Mark Telford,编辑 mark@semiconductor-today.com该公司还发布了一份白皮书,展示了其 GaN 器件的可靠性,超过了 JEDEC 和 AEC-Q101 测试规范的标准。在新加坡,IGSS GaN (IGaN) 正在建立一个 Epi 中心,作为 4-8 英寸晶圆 GaN MOCVD 的商业和全球联合实验室,将于 2021 年中期投入运营(第 22 页)。最近,就在 9 月 29 日,总部位于荷兰的 NXP Semiconductors 在其位于亚利桑那州钱德勒的工厂开设了新的 8 英寸晶圆 GaN 晶圆厂,专门用于蜂窝基础设施的 5G RF 功率放大器。新晶圆厂已经通过认证,初始产品正在市场上迅速推广,预计将在 2020 年底达到满负荷生产(下一期新闻页面将全面报道)。
Roy L. Nersesian 化石燃料、水力、核能和地热发电厂将可控产出与不可控需求相匹配。可以相当有把握地估计短期电力需求。发电厂的投产或停产是为了预测电力需求在早上增长,在下午和傍晚达到峰值,在深夜下降。一些发电厂(核能和煤炭)满负荷运转以满足基本负荷需求,而其他发电厂(天然气和水力)则根据不断变化的可变负荷需求增加和减少产能。加拿大、挪威、巴西和许多发展中国家的水电和法国的核电既满足基本需求,也满足可变需求。本文重点介绍如何通过模拟电力存储性能来将不确定或不可控的供应转变为可靠和可控的供应。虽然水力和地热是可控的可再生能源,但更具挑战性的是太阳能和风能。是的,太阳每天都在照耀,但云层呢?是的,风每天都在吹,但风速呢?因此,太阳能和风能的产出是不确定的;因此无法控制。随着太阳能和风能的持续增长,将无法控制的供应与无法控制的需求相匹配对公用事业运营商来说是一个越来越大的挑战。如果没有大规模的电力储存手段,随着太阳能和风能相对于可控的传统供应的重要性增加,这可能会成为一项艰巨的任务。如果有足够的电力储存,调度员可以从中补偿太阳能和风能产量的下降,就像增加化石燃料电厂一样,太阳能和风能就可以转化为可控的电源。电力储存可以比作传统的商品库存,在需求低迷时储存过剩的生产,在需求增加时减少生产。这允许或多或少保持生产平衡,库存可以吸收销售波动。同样,如果太阳能和风能产量的变化可以被引导到足够容量的电力储存中,那么太阳能和风能就可以转化为可控的供应。抽水蓄能电站或重力电池可以储存和供应电力,以弥补电力供需之间的不匹配。抽水蓄能电站或重力电池由两个不同高度的水库组成,水库上装有可逆式水泵涡轮机。多余的电力用于将水从下水库抽到上水库,电力则由水从上水库流向下水库的重力流产生。泵和涡轮机是同一种设备,驱动涡轮机将水抽到较高海拔的电动机变成发电机,水通过涡轮机流到较低海拔,从而产生动力。公用事业电池的功能与抽水蓄能电站相同,即储存剩余电力,以便调度以弥补短缺。目前,只有重力电池具有为公用事业服务所需的存储容量。公用事业电池正在开发中,但电池设计必须取得技术突破,以找到一种低成本材料,既能储存大量电力,又能适应快速充电和放电。本文旨在说明如何依靠 @RISK 模拟软件来模拟位于不同地点的太阳能和风力发电场系统的输出,从而处理可再生能源固有的不确定性。1 然后将系统输出与不确定的需求进行比较,以获得供需不匹配的概率分布。然后使用该概率分布来确定重力电池的尺寸,以补偿供需的变化,从而将不确定的供应转变为可控的供应,以满足需求的变化。公用事业电池的尺寸计算将遵循相同的一般格式。1 @RISK 模拟软件可从 Palisade Corporation (www.palisade.com) 获得。本文主题来自《能源风险建模》,可从 www.palisade.com/books/energy.asp 获取。作者是蒙茅斯大学 (rnersesi@monmouth.edu) 的教授,还撰写了《21 世纪的能源》(2010 年) 及其更新版本《能源经济学:市场、历史和政策》,该书将于 2016 年由 Routledge Publishing (www.routledge.com) 出版。《历史与政策》将于 2016 年由 Routledge Publishing(www.routledge.com)出版。《历史与政策》将于 2016 年由 Routledge Publishing(www.routledge.com)出版。