操作简单、可靠 — 16TJ 冷水机组的单个发生器提供一个溶液再浓缩阶段,这使 16TJ 冷水机组成为目前最基本的循环之一。16TJ 冷水机组的简单设计,加上其他质量特性,意味着固有的高可靠性。移动部件少、操作简单、可靠,可减少停机时间以及服务和维护成本。卓越的效率 — 16TJ 冷水机组在标准 ARI(空调和制冷研究所)操作条件下提供 17.2 磅/小时-吨的满载蒸汽速率,并在效率方面引领单效冷水机组市场。标准机器设计中包括一个溶液热交换器,用于通过预冷来自发电机的浓溶液来预热泵入发电机的稀溴化锂溶液,以及第二个热交换器,用于通过回收蒸汽冷凝水中的额外热量来进一步预热稀溶液,从而进一步提高循环效率。卓越的部分负荷性能 — 16TJ 冷却器的浓度控制系统允许在冷却水温度低至 64 F 时稳定地进行部分负荷运行,而无需冷却塔旁路。机器中集成的控制阀可确保制冷剂泵在部分负荷条件下稳定、连续地运行。16TJ 冷却器的连续运行范围为额定机器容量的 100% 至 10%。
随着客运需求的回升和全球大部分地区的新冠限制措施放松,可以预期,在经历了航空运输业有史以来最严重的危机之后,全球航空航天业现在可能是舔舐伤口、放松和恢复的时候。然而,情况却并非如此。在航空公司和机场努力解决员工短缺问题的同时,在疫情最严重的时候,航空公司和机场已让员工休假或解雇,而下一个意想不到的“黑天鹅”事件(来自似乎无穷无尽的危机鸟群)是全球零部件、材料和劳动力短缺,这给那些渴望提高生产率、满足客户需求的制造商带来了打击,而客户现在正期待更好的时光和增长。例如,CFM Leap 发动机的交付量大约只有新冠疫情前的一半,导致空客再次在其总装线生产无发动机的滑翔机。鉴于供应链紧缩,空客和波音都在修改其交付预测,供应链紧缩影响了从原材料到半导体的所有领域,预计将持续到 2023 年。瓶颈和短缺在一定程度上是由疫情期间全球供应链的断裂造成的,满载货物的集装箱船在世界各地的港口堆积如山,导致“即时”业务模式被推到了极限。俄罗斯入侵乌克兰导致钛供应出现不确定性、通货膨胀猖獗等其他因素加剧了这种情况,
加拿大西部谷物最新动态——2024-25 作物年度第 24 周摘要:第 24 周,CN 仍然专注于网络恢复和谷物运输流量的连续改善。CN 网络某些部分的寒冷天气影响了火车运行。因此,由于 CN 需要阻挡满载交通,因此终端出现了一些停车时间。第 24 周,谷物运输共计运输了 560,000 公吨谷物和加工谷物产品,比最近三年的平均水平高出约 15%。CN 最大可持续端到端供应链容量指导加拿大谷物供应链的容量在整个作物年度内都在变化,多种因素对在任何时间点可以通过系统运输的谷物量造成了实际限制。谷物供应链的最大可持续容量还取决于该供应链从原产地到目的地各个部分的容量和运营效率。 CN 认为,在持续的基础上,端到端谷物供应链在冬季可容纳每周最多 6,250 辆车(每周最多 595,000 公吨)的散装谷物和加工谷物产品,其中预计每周约有 900 辆车是加工谷物产品的装运。CN 的这些最大端到端谷物供应链容量水平假设必须具备多种条件才能实现这些水平。这些条件包括但不限于下表中列出的条件:
3.2 散货船附加标志 3.2.1 修改如下。 3.2.1 附加营运特征 BC-A 、BC-B 和 BC-C 下列要求适用于 1.2.1 定义的长度 L CSR 为 150 m 或以上的船舶。散货船应被授予下列附加营运特征之一: (a) BC-A :适用于设计用于运载货物密度为 1.0 t/m 3 及以上的干散货的散货船,除 BC-B 条件外,最大吃水时指定货舱为空。 (b) BC-B :适用于设计用于运载货物密度为 1.0 t/m 3 及以上的干散货的散货船,除 BC-C 条件外,所有货舱均满载。 (c) BC-C :适用于设计用于运载货物密度低于 1.0 t/m 3 的干散货的散货船。应提供以下附加服务特征,进一步详细说明在以下情况下设计时应用的设计装载条件在操作过程中应遵守的限制: ・ 如果最大货物密度小于 3.0 t/m 3 ,则附加服务特征 BC-A 和 BC-B 的 { 最大货物密度(t/m 3)},另见第 4 章第 8 节 4.1 。 ・ 如果船舶未根据第 4 章第 8 节 4.2.2 中规定的条件设计用于在多个港口装卸,则所有附加服务特征的 { 无 MP }。 ・ 对于附加服务特征 BC-A ,{ 货舱 a、b、… 可能为空 },另见第 4 章第 8 节 4.1 。 ・ 添加的 { 块装载 }
现将 2014 年 5 月 14 日至 23 日举行的第 93 届海上安全委员会(MSC93)大会通过的决议摘要如下,供您参考。 1. 通过的强制性要求 MSC93 通过了如下强制性要求: (1) 操舵装置(SOLAS II-1/29)(见附件 1 和 11) 这些要求旨在规定验证操舵装置要求的替代方法。 如果在船舶处于最深航行吃水时无法验证操舵装置要求,则船舶可采用下列方法之一验证符合该要求: (i) 船舶保持平衡龙骨且舵完全潜入水中,以与主机最大连续转速和最大设计螺距相对应的速度前行;或者 (ii) 如果在试航期间无法实现舵的全浸入,则应使用拟议试航装载条件下的浸没舵叶面积计算适当的前进速度。计算出的前进速度应使作用在主操舵装置上的力和扭矩至少与船舶在最深航海吃水处以与主机最大连续转数和最大设计螺距相对应的速度前进时进行测试时一样大;或者 (iii) 试航装载条件下的舵力和扭矩已经得到可靠预测并推算到满载条件。船舶速度应与主机最大连续转数和最大设计螺距和螺旋桨相对应。 各方同意将上述修正案应用于任何建造日期的船舶。尽管修正案将于 2016 年 1 月 1 日生效,但 MSC.1/Circ.1482 已获批准,以便在生效日之前尽早实施修正案。适用日期:2016 年 1 月 1 日或之后
现将 2014 年 5 月 14 日至 23 日举行的第 93 届海上安全委员会(MSC93)大会通过的决议摘要如下,供您参考。 1. 通过的强制性要求 MSC93 通过了如下强制性要求: (1) 操舵装置(SOLAS II-1/29)(见附件 1 和 11) 这些要求旨在规定验证操舵装置要求的替代方法。 如果在船舶处于最深航行吃水时无法验证操舵装置要求,则船舶可采用下列方法之一验证符合该要求: (i) 船舶保持平衡龙骨且舵完全潜入水中,以与主机最大连续转速和最大设计螺距相对应的速度前行;或者 (ii) 如果在试航期间无法实现舵的全浸入,则应使用拟议试航装载条件下的浸没舵叶面积计算适当的前进速度。计算出的前进速度应使作用在主操舵装置上的力和扭矩至少与船舶在最深航海吃水处以与主机最大连续转数和最大设计螺距相对应的速度前进时进行测试时一样大;或者 (iii) 试航装载条件下的舵力和扭矩已经得到可靠预测并推算到满载条件。船舶速度应与主机最大连续转数和最大设计螺距和螺旋桨相对应。 各方同意将上述修正案应用于任何建造日期的船舶。尽管修正案将于 2016 年 1 月 1 日生效,但 MSC.1/Circ.1482 已获批准,以便在生效日之前尽早实施修正案。适用日期:2016 年 1 月 1 日或之后
Power Rating: 8, 12, 16, 20, 24, 32, 40 and 50 KW (higher capacity available) Input Voltage: 208Y/120 or 480Y/277 VAC (+10%/-15%) Output Voltage: 208Y/120 or 480Y/277 VAC Output Frequency (Inverter Operation): 60 Hz ±0.5 Hz Voltage Regulation: ±3%, Regulated within CBEMA curve Output电压波形:正弦波<5%THD。效率:在线94% / 98%待机 /快速传输(典型)功率因数:0.8 CREST因子:3:1典型的电涌保护:逆变器将保护自身,并抵抗ANSI / IEEE C62.41 CAT中定义的刺激。A&B隔离:从线条完成。输出中性键与地面噪声隔离:-120 dB共同模式; -60 dB横向模式电池:密封,无维护,铅酸VRLA(标准)10年充电电流:符合UL924标准外部电池:可选的外部电池柜或直流源的硬件连接的准备。环境:湿度:0-95 rh W/ no冷凝工作温度:UPS:0˚至40°C。(32˚-104˚F)电池:20°至25˚C。(68˚-77˚F) Storage Temperature: -20° to 70°C (-4° to 158°F) Altitude: Up to 6,000 ft Safety Agencies: Listed UL1778, UL924 Standards Cabinet Sizes: Standard Cabinet Layout: Inverter cabinets: 39”W x 68”H x 18”D Battery cabinets: 51”W x 70”H x 30.5”D Standard Battery备份时间为90分钟 @满载。其他备用时间可用 - 联系工厂。
现将 2014 年 5 月 14 日至 23 日举行的第 93 届海上安全委员会(MSC93)大会通过的决议摘要如下,供您参考。 1. 通过的强制性要求 MSC93 通过了如下强制性要求: (1) 操舵装置(SOLAS II-1/29)(见附件 1 和 11) 这些要求旨在规定验证操舵装置要求的替代方法。 如果在船舶处于最深航行吃水时无法验证操舵装置要求,则船舶可采用下列方法之一验证符合该要求: (i) 船舶保持平衡龙骨且舵完全潜入水中,以与主机最大连续转速和最大设计螺距相对应的速度前行;或者 (ii) 如果在试航期间无法实现舵的全浸入,则应使用拟议试航装载条件下的浸没舵叶面积计算适当的前进速度。计算出的前进速度应使作用在主操舵装置上的力和扭矩至少与船舶在最深航海吃水处以与主机最大连续转数和最大设计螺距相对应的速度前进时进行测试时一样大;或者 (iii) 试航装载条件下的舵力和扭矩已经得到可靠预测并推算到满载条件。船舶速度应与主机最大连续转数和最大设计螺距和螺旋桨相对应。 各方同意将上述修正案应用于任何建造日期的船舶。尽管修正案将于 2016 年 1 月 1 日生效,但 MSC.1/Circ.1482 已获批准,以便在生效日之前尽早实施修正案。适用日期:2016 年 1 月 1 日或之后
现将 2014 年 5 月 14 日至 23 日举行的第 93 届海上安全委员会(MSC93)大会通过的决议摘要如下,供您参考。 1. 通过的强制性要求 MSC93 通过了如下强制性要求: (1) 操舵装置(SOLAS II-1/29)(见附件 1 和 11) 这些要求旨在规定验证操舵装置要求的替代方法。 如果在船舶处于最深航行吃水时无法验证操舵装置要求,则船舶可采用下列方法之一验证符合该要求: (i) 船舶保持平衡龙骨且舵完全潜入水中,以与主机最大连续转速和最大设计螺距相对应的速度前行;或者 (ii) 如果在试航期间无法实现舵的全浸入,则应使用拟议试航装载条件下的浸没舵叶面积计算适当的前进速度。计算出的前进速度应使作用在主操舵装置上的力和扭矩至少与船舶在最深航海吃水处以与主机最大连续转数和最大设计螺距相对应的速度前进时进行测试时一样大;或者 (iii) 试航装载条件下的舵力和扭矩已经得到可靠预测并推算到满载条件。船舶速度应与主机最大连续转数和最大设计螺距和螺旋桨相对应。 各方同意将上述修正案应用于任何建造日期的船舶。尽管修正案将于 2016 年 1 月 1 日生效,但 MSC.1/Circ.1482 已获批准,以便在生效日之前尽早实施修正案。适用日期:2016 年 1 月 1 日或之后
输入通道数:2 配置:可通过软件选择同步机(3 线)或旋转变压器(4 线) 分辨率:16 位 精度:± 2.6 角分 频率:50 Hz 至 4.0 kHz 信号输入:2-28 Vrms. 输入阻抗:478 kΩ ±10 kΩ 加速度:300 rps/s @ 60 Hz, 450 rps/s @ 400 Hz 1000 rps/s @ 4000 Hz 阶跃响应:800 mS - 179° @ 60 Hz, 150 mS - 179° @ 2500 Hz 更新率:最大更新率等于激励频率。参考输出通道数:2(每个输入通道一个)输出电压:28 Vrms,最高 1.2 VA。电压分辨率 1.2 mVrms 参考频率 50 Hz 至 4 kHz (+/-1%) 同步器/分解器输出通道数 2(同步器/分解器输入和模拟输出的总数限制为 2。)配置同步器(3 线)或分解器(4 线)分辨率 16 位输出电压 28 Vrms 高达 1.2 VA。输出精度 ±4 弧分 通用规格 工作温度 经测试 -40 °C 至 +85 °C(在非 GigE Cubes 中,如果工作温度高于 60 °C,则需要 DNA-FAN。) 振动 IEC 60068-2-6 IEC 60068-2-64 5 g,10-500 Hz,正弦波 5 g(rms),10-500 Hz,宽带随机 冲击 IEC 60068-2-27 100 g,3 ms 半正弦波,6 个方向 18 次冲击 30 g,11 ms 半正弦波,6 个方向 18 次冲击 湿度 5 至 95%,无凝结 海拔 120,000 英尺 MTBF 275,000 小时 功耗 空闲时 4.5 瓦,满载时最高 10 瓦 订购 指导