Crane 压力传感器采用蓝宝石硅基传感技术,具有出色的精度、可靠性和稳定性。直接位于压力膜片上的集成温度传感器可提供最佳温度补偿。Crane 压力传感器比传统的机械共振型传感器尺寸更小,耗电量更少,同时提供更好的热瞬态响应。出色的重复性和稳定性使用数字补偿可将异常精度提高到满量程的 0.01% 以内。
概述 CI3166xa 是一款双高速低功耗 6 位 100 MS/s ADC 核心单元,专为 0.18um 1P6M +MiM CMOS 技术而设计。ADC 架构采用插值闪存 ADC,以低功耗和输入电容实现高采样率。可编程增益放大器用于适应 0.25 V、0.5 V 和 0.75 V 的满量程输入范围。参考电压在内部生成,并提供外部用于去耦目的。
状态条件 F9X 初始化失败。(子代码如下。)F91 EPROM 总数检查失败。F92 启动时系统故障 - 电流过高或过低。F93 看门狗定时器故障。F94 RAM 故障。F95 启动时内部 5 伏电源故障。F96 启动时外部 24 伏电源故障。F97 控制器类型无效。RAM 数据有误。F98 看门狗定时器复位控制器。F70 外部复位按钮已激活 15 秒或更长时间。松开按钮后自动清除。F60 外部 24 伏直流电源输入不在 18 至 32 伏直流范围内。F50 内部 5 伏电源不在 4.75 至 5.25 伏范围内。F40 传感器故障(启动后)。输入高于 35 毫安或低于 2 毫安。F30 负零点漂移。传感器输入为满量程的 –9% 或更低。F2X 校准错误。 (子代码如下。)F20 一般校准故障,或由于更高优先级故障而导致校准中止。F21 等待用户将气体施加到传感器时时间已到。F22 传感器输入太低。传感器无法产生足够的偏移量以获得准确的校准。更换传感器。F23 传感器太敏感,控制器无法读取 100% 满量程。更换传感器。F24 零气水平过高,或传感器零输入超过限制。F10 传感器达到使用寿命。考虑在接下来的两个校准周期内更换传感器。
方位 RS485 串行数字格式同时为两个站提供 TACAN 方位,正弦/余弦交流电,7.9 伏峰值*,100 毫安峰值低电平 CDI 输出(根据 ARINC 547):航向 ......................................每 10 度偏差 .150 Mv ................ ± 10 度满量程,最高 5 个 1,000 欧姆负载标志输出 ............................ 根据 ARINC 547 和 ARINC 579 低级 ..............0.5 VDC,最大 1 Ma,最多 4 个 1,000 Ohm 负载高电平 ............................... 28 VDC,最大 250 Ma 至/从输出 .....。。。。。。。。。。。。。。。。。。。。。。。。.最多三个 200 欧姆负载
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。此电路是应用说明 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于补偿电阻器 R S 对桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 R S 串联的 100Ω 微调电位器调整。这里使用的 R PLAT 值低于 AN43 中的值,以提高动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。此范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
图 1 中的电路显示了如何使用一个运算放大器将传感器输出(例如铂 RTD 桥)数字化。该电路是应用笔记 43 中电路的修改版。1 LTC1292 的差分输入消除了共模电压。LT1006 用于放大。连接在 LT1006 的 + 输入和 LTC1292 的 +IN 输入之间的电阻器用于通过电阻器 RS 补偿桥的负载。满量程可以通过 500kΩ 微调电位器调整,偏移可以通过与 RS 串联的 100Ω 微调电位器调整。这里使用比 AN43 中更低的 R PLAT 值来改善动态范围。+IN 引脚上的信号电压不得超过 V REF 。差分电压范围为 V REF 减去约 100mV。这个范围足以测量 0°C 至 400°C 的温度,分辨率为 0.1°C。
DAC8811 是一款单通道电流输出、16 位数模转换器 (DAC)。其架构如图 18 所示,是一种 R-2R 梯形配置,其中三个 MSB 分段。梯形的每个 2R 支路均可切换到 GND 或 I OUT 端子。通过使用外部 I/V 转换器运算放大器,DAC 的 I OUT 端子保持在虚拟 GND 电位。R-2R 梯形连接到外部参考输入 V REF,该输入决定 DAC 满量程电流。R-2R 梯形为 5k Ω ±25% 的外部参考提供与代码无关的负载阻抗。外部参考电压可在 -15 V 至 15 V 范围内变化,从而提供双极 I OUT 电流操作。通过使用外部 I/V 转换器和 DAC8811 R FB 电阻器,可以生成 -V REF 至 V REF 的输出电压范围。