众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。
在过去的几十年中,植物生物技术的进步允许开发转基因的玉米品种,这些品种显着影响了农业管理并改善了全球的谷物产量。迄今为止,转基因的品种占世界玉米培养区域的30%,并结合了除草剂,昆虫和疾病耐药性,非生物胁迫耐受性,高产量和提高的营养质量等性状。玉米转化是转基因玉米发展的先决条件,不再是主要的瓶颈。使用形态调节剂的方案已显着发展,以增加转化频率和基因型独立性。使用稳定或瞬态表达和组织培养方法的新兴技术,例如使用RNA引导的内核酸酶系统作为一个体内所需的靶标的突变器,同时双倍型产生和编辑/单倍倍倍倍型诱导者介导的基因组介导的基因组编辑和plulen presection sextres sextress sex sepress,本综述总结了玉米转换方案,技术和应用的重大进展,并讨论了当前状态,包括针对特征发展的管道以及与当前和未来的基因和遗传修改和遗传编辑的玉米品种有关的调节问题。
吴玉成现为合肥工业大学特聘教授、博士生导师。2000年获中国科学院凝聚态物理博士学位。目前的研究兴趣主要集中在聚变材料、能源相关材料和功能纳米材料上。他曾在世界各地担任各种学术职务,包括圣安德鲁斯大学名誉教授(2013-)、皇家墨尔本理工大学客座教授(2012-)、中国微米纳米技术学会理事(2012-)、国家先进能源环境材料国际科技合作基地主任(2017-)。他在Science Advances、Advanced Materials、Advanced Functional Materials、ACS Nano等期刊上发表了300多篇同行评议科学论文,总引用次数超过12 000次。
概述 本活动使用塞伦盖蒂生态系统的一个例子来说明植物、动物和环境之间的营养交换。 塞伦盖蒂作为案例研究可以教授许多生态学概念。 这是一个丰富多样的栖息地,人们进行了大量研究来解释生物如何相互影响以及与环境如何相互作用。 本活动以典型的稀树草原草和角马为例,重点介绍碳、氮和磷的循环。 在观看简短的介绍视频后,学生使用卡片活动来了解塞伦盖蒂营养循环中的一些过程。 然后,他们通过小组讨论和完成额外的讲义来反思这些过程。 讲义有两种版本,根据对学生所需的先验知识量而有所不同。
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
量子技术(包括通信、计算和传感)在很大程度上依赖于量子系统的特性(包括自旋和光子)来编码、处理和传输信息。纳米材料中的原子缺陷(例如金刚石纳米晶体和六方氮化硼 (hBN))代表了这些技术的有前途的平台。这些由晶格不规则性形成的缺陷中心在紧凑性、可扩展性和可集成性方面具有无与伦比的优势,使其成为先进量子设备的首选。然而,退相干和外部扰动带来的挑战限制了系统性能,仍然是重大障碍。
k空间中的电势和bloch带。b |时间周期性潜力和能量带有浮子带。c,d | 2D狄拉克系统中的浮雕工程,导致浮点边带(红色)和谐振缝隙在交叉点开口。e,f | Ti Bi 2 Se 3中Trarpes对浮标状态的实验观察结果。在不同延迟时间(e)的表面狄拉克锥的trarpes光谱。trarpes频谱在零延迟时间(F)。g |光引起的异常大厅电流信号。h |光诱导的霍尔电导与能量的关系。i |使用Floquet理论在光激发下的有效带结构。面板E是参考文献中的trarpes数据。69,并从参考文献中转载。291,Springer Nature Limited。面板F从参考文献转载。69,Springer Nature Limited。面板G-i从参考文献中转载。71,Springer Nature Limited。71,Springer Nature Limited。
2024年7月1日——......未经国防部批准不得进行。本协议终止后亦同。 4.3 设备、机械和消耗品。加工所需的设备、机械和消耗品在采购说明中规定。
2024年10月11日 — 规格及材质等 商品的规格及材质如表2所示,详情请参阅框架(附御信卡)商品图(规格、设计等)(附录1)及御信卡(底座)商品图(规格、设计等)……
摘要:有效的纳米光子设备对于在量子网络,光学信息处理,传感和非线性光学方面的应用至关重要。广泛的研究工作重点是将二维(2D)材料整合到光子结构中,但是这种整合通常受大小和材料质量的限制。在这里,我们使用六角硼(HBN),这是一种封装原子薄材料的基准选择,作为波导层,同时提高了嵌入式膜的光学质量。与光子逆设计结合使用时,它将成为一个完整的纳米光子平台,可与光学活跃的2D材料接口。光栅耦合器和低损耗波导提供了光学接口和路由,可调腔提供了大型激子 - 光子耦合,通过purcell增强型与过渡金属二甲化合物(TMD)单层相结合,并通过purcell增强功能,并且可以通过Metasurfaces有效地检测TMD Dark Dark Ickitons。这项工作为经典和量子非线性光学器件的高级2D材料纳米光子结构铺平了道路。关键字:2D材料,纳米光子学,逆设计,集成光子学,光腔