首先,根据泰勒展开式对最近发展起来的非线性滤波方法——Cuature卡尔曼滤波器(CKF)的性能评估进行了分析。理论分析表明,非线性滤波方法CKF只有在非线性系统中实现时才显示出其优势。类似地,非线性方向余弦矩阵(DCM)表达式被纳入紧密耦合的导航系统中,以表示真实导航坐标系和估计导航坐标系之间的对准误差。仿真和实验结果表明,在不可观测的大指向误差下,以及在 GPS 故障且指向误差快速累积导致 psi 角的表达式失效的情况下,CKF 的性能优于扩展卡尔曼滤波器(EKF),从而表达一定程度的非线性。
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 ......................。。9 2.1.1 功率级。。。。。。。。。。。。。。。。。。。。。......10 单端功率级 [21, 22]: .........10 差分功率级 [16, 23]: ......。。。。10 2.1.2 调制。。。。。。。。。。。。。。。。。。。........12 2.1.2.1 脉冲宽度调制 (PWM) .......12 2.1.2.2 差分 D 类放大器的 PWM ......14 二元调制: ..................14 三元调制: ....................15 2.1.2.3 自激振荡调制 ........。。。。。。。。16 2.2 D 类放大器的 EM 发射 ...................18 2.2.1 输出轨的 EMI ......................18 2.2.2 供电轨处的 EMI .......。。。。。。。。。。。。。。。20 2.2.3 EMC 解决方案。。。。。。。。..................22 2.3 表征 D 类放大器 .....。。。。。。。。。。。。。。24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
2 从 EMC 角度看 D 类放大器 9 2.1 D 类放大器基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 D 类放大器的 EM 发射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 D 类放大器的特性分析 . . . . . . . . . . . . . . . . . . . . . . . 24
B.1 公式(3.5)的证明 ........................135 B.2 公式(3.8)的证明 .......................136 B.3 公式 (3.9) 的证明 ......................137 B.4 公式 (3.11) 的证明 .............。。。。。。。。139
多普勒测速仪被添加到此传感器套件中以提高滤波器的性能。作为滤波器的一个组成部分,磁罗盘和陀螺罗盘偏差被估计
soe; -222无环®,按钮盖端SOE; -222无环®,鳍端soe; -222 O形圈,按钮盖末端SOE; -222 O形圈,鳍端SOE; -226无环®,按钮盖末端SOE; -226无环®,鳍端soe; -226 O形圈,按钮帽端SOE; -226 O形圈,Fin End
• 增益和频率调整的灵活性:由于运算放大器可以提供电压增益,有源滤波器中的输入信号不会像无源滤波器那样衰减。有源滤波器的调整或调谐非常容易。• 无负载效应:由于运算放大器的输入电阻高、输出电阻低,有源滤波器不会导致输入源或负载的加载。• 成本和尺寸:由于可以使用低成本运算放大器并且不需要电感器,有源滤波器比无源滤波器便宜。• 寄生效应:由于有源滤波器尺寸较小,因此寄生效应较少。• 数字集成:模拟滤波器和数字电路可以在同一 IC 芯片上实现。• 滤波功能:有源滤波器可以实现比无源滤波器更广泛的滤波功能。• 增益:有源滤波器可以提供增益,而无源滤波器通常会产生很大的损耗。