摘要 引言:卡介苗 (BCG) 的疗效有限,迫切需要新的有效的疫苗接种方法来控制结核病。聚乳酸-乙醇酸 (PLGA) 是一种常见的药物递送系统。然而,PLGA 基纳米颗粒 (NPs) 诱导粘膜免疫反应对抗结核病的作用尚未完全阐明。在本研究中,我们假设用载有培养滤液蛋白 10 (CFP10) 的 PLGA NPs (CFP10-NPs) 进行鼻内免疫可以增强 BCG 在小鼠体内对牛分枝杆菌的保护性免疫。方法:将重组蛋白 CFP10 封装在 PLGA NPs 中,采用经典的水-油-水溶剂蒸发法制备 CFP10-NPs。然后,研究了CFP10-NPs对体外巨噬细胞和体内BCG免疫小鼠的免疫调节作用。结果:我们使用球形CFP10-NPs,其表面带负电荷(zeta电位-28.5±1.7mV),粒径为281.7±28.5nm。值得注意的是,CFP10-NPs显著增强了J774A.1巨噬细胞中肿瘤坏死因子α(TNF-α)和白细胞介素(IL)-1β的分泌。此外,用CFP10-NPs进行粘膜免疫显著增加血清中TNF-α和IL-1β的产生,以及支气管肺泡灌洗液(BALF)中免疫球蛋白A(IgA)的分泌,并促进小鼠脾细胞中CFP10特异性干扰素-γ(IFN-γ)的分泌。此外,CFP10-NPs 免疫显著减少了 M. bovis 攻击后 3 周肺组织的炎症面积和细菌负荷。结论:CFP10-NPs 显著提高了 BCG 的免疫原性和保护效力。我们的研究结果探索了基于 PLGA NPs 的气道粘膜疫苗作为肺靶向递送载体的潜力。
i)用给定的酸溶液冲洗干净的鼻腔ii)夹具倾斜架上的尺寸。使用漏斗用酸溶液填充尺寸。将酸溶液倒入Reniscus水平后必须去除此漏斗。iii)避免在底片内的溶液中避免用碱或基本溶液冲洗干净的2ocm³或25厘米的移液器,给定v)液化剂20厘米或25厘米的碱或底座或底座成一个干净的缝隙瓶。应在半月板一级准确阅读移液器。vi)切勿用要放置的溶液冲洗锥形瓶。锥形瓶应干净,但不一定干燥。vii)将2或3滴指示剂加到圆锥瓶中的底座或碱。viii)从滴定表上的弯月板级别写下最初的质量质量读数。必须通过将酸溶液逐渐从瓶中运行到烧瓶中的碱溶液,并在添加酸时轻轻摇动烧瓶,从而将读数至少放在十进制IX)滤液中。x)立即停止滴定,烧瓶中溶液的颜色发生了变化。这称为终点。xi)重复滴定3 0R 4次,并根据结果计算平均过滤器值。读数的差异和平均滤波器值不得超过±0.2。指示器在滴定过程中使用染料,以指示其颜色的变化,当达到终点时。指示剂通常是有机酸或碱,它们在溶液中稍微电离以产生确定颜色是否变化的离子。
生物学 生物世界的多样性:生物世界:生物世界的多样性,分类类别,生物学分类:界(原核生物界、原生生物界、真菌界、植物界和动物界),病毒、类病毒和地衣,植物界:藻类、苔藓植物、蕨类植物、裸子植物、被子植物,动物界:动物分类的基础和动物分类植物和动物的结构组织:开花植物的形态:根、茎、叶、花序、花、果实、种子,典型的开花植物的半技术描述,一些重要科的描述,开花植物的解剖学:组织系统,双子叶植物和单子叶植物的解剖学动物的结构组织:器官和器官系统,两栖动物 - 青蛙细胞:结构和功能:细胞:生命:细胞、细胞理论、细胞概述、原核细胞、真核细胞 生物分子:生物体化学成分分析、初级和次级代谢物、生物大分子、蛋白质、多糖、核酸、蛋白质结构、酶 细胞周期和细胞分裂:细胞周期、有丝分裂和减数分裂及其意义 植物生理学:高等植物的光合作用:光合作用、早期实验、光合作用的位置、参与光合作用的色素、光反应、电子传递、ATP 和 NADPH 的合成和利用、C4 途径、光呼吸、影响光合作用的因素 植物的呼吸作用:植物呼吸吗?糖酵解、发酵、有氧呼吸、呼吸平衡表、克雷布斯/柠檬酸循环、呼吸商植物生长和发育:生长、分化、去分化和再分化、发育、植物生长调节剂人体生理学:呼吸和气体交换:呼吸器官、呼吸机制、气体交换、气体运输、呼吸调节、呼吸系统疾病体液和循环:组织液-血液、淋巴、循环途径、双循环、心脏活动调节、循环系统疾病排泄产物及其消除:人体排泄系统、尿液形成、小管功能、滤液浓缩机制、肾功能调节、排尿、其他器官在排泄中的作用、排泄系统疾病
舱外机动装置 (EMU) 内的现行废物管理系统由一次性尿布——最大吸收服 (MAG) 组成,它可以在长达 8 小时的舱外活动 (EVA) 期间收集尿液和粪便。长时间接触废物会导致卫生相关的医疗事件,包括尿路感染和胃肠道不适。从历史上看,在使用 MAG 之前,宇航员在开始体力消耗大的太空行走之前会限制食物摄入量或食用低残渣饮食,从而降低他们的工作绩效指数 (WPI) 并带来健康风险。此外,目前的 0.95 升宇航服内饮料袋 (IDB) 无法为更频繁、更远距离的太空行走提供足够的水,这更有可能出现需要延长离开航天器时间的应急情况。每磅货物运往太空的高昂运输成本和资源稀缺性加剧了这些挑战,凸显了节水废物管理的必要性。本文介绍了威尔康奈尔医学院梅森实验室开发的一种新型宇航员宇航服内尿液收集和过滤系统,该系统可以解决这些卫生和补水问题。该装置通过外部导管收集宇航员的尿液,并使用正向和反渗透 (FO-RO) 将其过滤成饮用水,创造可持续的卫生循环水经济,增进宇航员的健康。这项研究旨在使用改进的 MAG 实现 85% 的尿液收集率。改进的 MAG 将由内衬抗菌织物的柔性压缩材料制成,尿液通过硅胶尿液收集杯收集,该杯因男性和女性宇航员的不同而不同,以符合人体解剖学。湿度传感器检测到杯中尿液的存在,便会触发通过真空泵的尿液收集。 FO-RO 过滤系统的目标是至少回收 75% 的水,同时消耗不到 10% 的 EMU 能源。为了满足健康标准,滤液保持低盐含量(< 250 ppm NaCl)并有效去除尿液中的主要溶质(尿素、尿酸、氨、钙)。
聚(乙烯基氯化物),由于在其上掺入增塑剂,PVC具有广泛的应用。增塑剂使PVC聚合物柔性,可延展且易于加工。本文介绍了增塑剂的一般概述,该概述涵盖了其定义,类型,样本和来源。基于石油的增塑剂在本质上是有毒的,可能对人类的健康有害。因此,由于塑料工业的毒性低,渗透性,增强的热和机械性能以及与PVC的高兼容性,因此已将生物塑性化剂引入了塑料工业。本文还列出了增塑剂的性能,其各种应用,以及将增塑剂应用于PVC的研究作品的简要摘要。关键词:增塑剂,邻苯二甲酸盐,渗滤液性聚合物,生物塑性剂的引入多年来,增塑剂在塑料工业中发挥了重要作用,因为它被用作聚合物(例如乙烯基氯化物)的添加剂。通常,未塑料的PVC具有有限的范围,例如管道,窗口轮廓和壁板。这是由于其坚硬而脆弱的性质是由Cl-Cl键的存在引起的。为了改善PVC的机械和热性能,将增塑剂引入聚合物中(Unar等,2010)。此外,增塑剂还为最终产物提供了足够的弹性,柔韧性和锻造性。增塑剂只是指在聚合物中添加到较低的玻璃温度和不折痕加工性,可加工性和延展性的低分子量化合物(Wei等,2019)。然而,由于环境和健康问题,塑料行业逐渐将其研究重点从传统的基于邻苯二甲酸酯的增塑剂转变为基于生物的增塑剂(Mekonnen等,2013)。此外,可以生产邻苯二甲酸酯的石油资源有限,导致许多研究用于使用生物质量。基于生物的增塑剂本质上是可再生的,并防止其浸出。此外,它的毒性和环境较小(Tong and Hai,2018; Lee等,2018)。一些研究人员已与PVC合成和应用生物塑性剂。,例如甘油酯,琥珀酸酯,等齿,脂肪酸,蓖麻油衍生物,植物油,乳酸和柠檬酸酯(Lavorgna等,
肿瘤治疗(尤其是免疫治疗和溶瘤病毒治疗)的有效性主要取决于宿主免疫细胞的活性。然而,癌症患者体内存在各种局部和全身免疫抑制机制。肿瘤相关免疫抑制涉及许多免疫成分的失调,包括 T 淋巴细胞数量减少(淋巴细胞减少症)、循环和肿瘤滤过性免疫抑制亚群水平或比率增加 [例如巨噬细胞、小胶质细胞、髓系抑制细胞 (MDSC) 和调节性 T 细胞 (Treg)],以及由于各种可溶性和膜蛋白(受体、共刺激分子和细胞因子)表达改变导致抗原呈递、辅助和效应免疫细胞亚群功能缺陷。在这篇综述中,我们特别关注标准放化疗前胶质母细胞瘤/神经胶质瘤患者的数据。我们讨论了基线时的胶质母细胞瘤相关的免疫抑制以及循环和肿瘤滤过免疫细胞(淋巴细胞、CD4+ 和 CD8+ T 细胞、Treg、自然杀伤 (NK) 细胞、中性粒细胞、巨噬细胞、MDSC 和树突状细胞)不同亚群的预后意义,包括中性粒细胞与淋巴细胞比率 (NLR),重点关注异柠檬酸脱氢酶 (IDH) 突变型胶质瘤、原神经、经典和间充质分子亚型的免疫概况和预后意义,并强调了大脑免疫监视的特点。所有试图在胶质母细胞瘤组织中确定可靠的预后免疫标志物的尝试都得到了相互矛盾的结果,这可以解释为,除其他外,免疫滤液前所未有的空间异质性水平以及免疫亚群的显著表型多样性和(功能障碍)功能状态。高 NLR 是胶质母细胞瘤和癌症患者总生存期较短的最反复证实的独立预后因素之一,其与其他免疫反应或全身炎症标志物相结合可显著提高预测的准确性;然而,需要更多的前瞻性研究来证实 NLR 的预后/预测能力。我们呼吁
夏威夷塞拉俱乐部代表超过 20,000 名会员和支持者支持 HB242 法案,该法案将有助于解决与电动汽车中使用的锂离子电池有关的日益严重的废物流问题。我们岛屿未能对我们持续产生的固体废物以及我们消费型经济的外部成本负责,这对我们的环境、公共健康和整体生活质量造成了重大且不断增长的影响。我们垃圾填埋场的渗滤液有可能污染我们的水资源和近岸地区;瓦胡岛废物转化能源设施产生的有毒排放和灰烬增加了附近主要是夏威夷原住民社区患肺癌和心脏病、神经系统并发症、生殖问题和癌症的风险;我们有限的土地面积和敏感的环境和地下水源严重限制了我们接收和储存废弃副产品的空间。不幸的是,虽然电动汽车有助于减少我们对化石燃料的依赖,并进一步推动我们在 2045 年前实现净负碳足迹,但为电动汽车供电的锂离子电池可能会加剧我们的固体废物难题。值得注意的是,此类电池的储存、运输和处置带来了独特的废物管理挑战,特别是考虑到火灾和有毒化学物质泄漏的可能性、经济实惠的旧电池和损坏电池的离岸运输选择有限,以及我们岛屿上缺乏任何适当的锂电池处理设施,更不用说回收设施了。随着越来越多的电动汽车进口,这些独特的挑战只会随着时间的推移而增加。因此,塞拉俱乐部支持这项措施的努力,开始研究和规划进入我们废物流的电动汽车电池的管理过程,包括通过潜在的电池回收和再利用。这不仅可以避免迫在眉睫的危险废物危机,而且回收和再利用的创新策略还可以为当地居民和企业带来教育机会和经济效益。因此,夏威夷塞拉俱乐部恭敬地敦促委员会通过 HB242。非常感谢你给我作证的机会。
新颖的测试方法(镰刀确认)以区分镰状细胞贫血与镰状细胞特征,以在发展中国家蒂姆·兰多夫(Tim R. R. R. R. R. R. R. Randolph),珍娜·惠纳(Jenna Wheelhouse)摘要这项研究的目的是开发一种诊断测试方法来检测HBS,区分镰状细胞的肉体纯合子,从而使杂质者与杂质测试和胜利的障碍物相处的领域,这些方法是在实验室中涉及的障碍。对镰状细胞阳性和阴性的血液样品进行标准血红蛋白溶解度测试,然后进行多种离心和过滤程序。评估了每个过程的能力,可以从样品中删除不溶性HBS。通过分光光度法或视觉估算的分光光度测量(HBA,HBA 2和HBF)的血红蛋白类型,允许样品分为三种基因型(AA,AS和SS),这是由血红蛋白电泳确认的。从圣路易斯大学和枢机主教Glennon儿童医院获得了识别的EDTA血液样本,并在圣路易斯大学的临床实验室科学系进行了测试。主要结果指标是溶解度溶液的浊度;离心后,上清液的颜色和溶液表面的材料;沉淀被困在滤纸上;滤液的吸光度;和血红蛋白电泳模式。离心和过滤成功地将HBS与HBA /A 2 /F分离,从而使七个镰状细胞与16个杂合子的七个镰状细胞分化,其灵敏度和特异性为100%。索引术语:镰状细胞贫血,血红蛋白病,镰状细胞病,镰状细胞性状,第三世界国家这种方法有可能可靠地区分纯合子与杂合的镰状细胞患者,并且快速,廉价且简单。这些特征使镰刀在海地和非洲等发展中国家确认了一种理想的方法,镰状细胞贫血很普遍,现代诊断方法(如电泳,HPLC和核酸测试)是不切实际的。
系统性硬化症 (硬皮病;SSc) 是一种病因不明的免疫介导疾病,其特征是皮肤和内脏器官(尤其是肺、胃肠道和心脏)的血管病变和纤维化 ( 1 )。尽管付出了所有努力,但目前尚无治愈性疗法,SSc 仍然是一种严重的疾病,可导致残疾,其发病率和死亡率与纤维化的程度直接相关 ( 1 )。由于免疫失调被认为在 SSc 的发病机制中起着重要作用,因此基于免疫抑制药物(如霉酚酸酯)的治疗方案仍然是主要的治疗选择,尤其是对于伴有严重肺部疾病的 SSc ( 2 )。自身抗体(其中一些具有潜在致病性 ( 3 ))是 SSc 的标志,再加上 SSc 患者皮肤活检中的滤液中的 B 细胞,表明适应性免疫参与了该疾病的发病机制,并促进了利妥昔单抗 (RTX) 等 B 细胞耗竭药物的治疗应用。利妥昔单抗是一种抗 B 细胞抗原 CD20,但其在结缔组织疾病中的作用机制仍不清楚,可能不只是 B 细胞的耗竭。关于其在 SSc 中的疗效,报告的数据相互矛盾 ( 4 )。在最近的系统评价和荟萃分析中,Goswami 及其同事表明,RTX 作为 SSc 间质性肺病的治疗方法,在治疗的第一年改善了 FVC 和 DLco ( 5 )。另外两篇系统评价和荟萃分析 ( 6 , 7 ) 以及一项纳入了 254 名 SSc 患者的观察性研究 ( 8 ) 表明皮肤评分改善、器官受累稳定。尽管观察到了这些可能的有益作用,但尚未记录到长期效果。RTX 疗效的一个潜在缺点可能来自于以下事实:这种药物在 B 细胞耗竭方面确实有效,但浆细胞和造血干细胞不在其靶点之列。长寿浆细胞被认为是 SSc 发病机制中的重要参与者,因为它们与 CD20+ B 细胞一起渗入 SSc 患者的皮肤,并且是 SSc 自身抗体的主要来源,这些自身抗体也可能发挥功能性作用 ( 9 )。
I.引言废物是任何现代社会效率低下的象征,也是未分配资源的代表。1个有机废物,例如,MSW主要是由房屋持有,工业和公共服务生成的。通过增加人口,行业和公共服务来增加MSW的数量。垃圾填埋场中的有机废物处置已引发了各种环境问题,例如温室气体排放和渗滤液。2未经处理的有机废物沉水池在土壤上,排放到治疗环境或人类健康的土地,水或空气中。3,4土壤污染是将一种或多种化学,物理和生物学物体进入土壤的条件,它们会破坏土壤结构并使植物难以适应。环境废物将被正确食用废物的生物清理。分解剂在通过生态系统的能量流中起关键作用。它们将死亡的生物分解成简单的无机材料,从而使主要生产者可以使用营养。在活土壤中,各种生物(微生物和动物群)在生命中进行各种活动。分解过程和原始有机材料的分解过程以完成堆肥,而分解剂分解了死者,有机材料,碎屑(如千足虫,earth,earth,termites) - 食用死有机体废物。死植物材料,例如叶子和木材,动物尸体和粪便。他们作为地球的清理工作人员执行有价值的服务。没有分解剂,死树,死昆虫和死动物将堆积在各处。更重要的是,分解器使生态系统的主要生产商(通常是植物和藻类)可以使用重要的营养。分解器将复杂的有机材料分解为更多的基本物质,水和二氧化碳,以及含有氮,磷和钙的简单化合物。所有这些成分都是植物需要生长的物质。5一些分解剂是专门的,只分解了某种死者。其他是以许多不同材料为食的通才。分解器将养分返回到土壤或水中,生产者可以使用它们生长和繁殖。6大多数分解剂是微观生物,包括原生动物和细菌。其他分解器足够大,可以看到没有显微镜。它们包括真菌以及无脊椎动物有时称为letritivores,其中包括earth,白蚁和千足虫。分解过程,原始有机材料对成品堆肥的分解。自从生命首次出现在