(c)浸入量子自旋液体中的磁液滴[15]; (d)磁电材料表面上方的单个电荷,Cr 2 O 3,诱导表面下方的图像单极,然后图像单子在表面上方产生理想的单极磁场[20]。
开发微电子电路时,一个常见的设计范例是“标准单元”的概念。由于 PMOS 和 NMOS 晶体管在集成电路上的制造方式,微电子电路设计人员将每种晶体管类型放在自己的行中会很有帮助。由于 PMOS 晶体管的源极通常连接到正电源轨或另一个 PMOS 晶体管的漏极,因此将所有 PMOS 放在顶行很有帮助(见图 2)。相反,NMOS 晶体管的源极几乎总是连接到另一个 NMOS 的漏极或接地。这就是为什么 NMOS 晶体管总是在底部的原因。
备注 2 : BV DSS 是指加在每个功率 MOSFET 源漏之间的极限最高电压,实际应用的时候,考虑到导线杂散电感的影响, V PN 必须足够小于 BV DSS
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
本研究中的 TFET 为浮体 SOI 器件,因此应首先评估执行电荷泵浦测量的可行性 [19]。当用具有恒定基极电平和幅度的方波脉冲栅极时,漏极和源极保持在相同的电位,该电位扫过 0 至 1.5 V 的适当范围,以激活 Si/栅极电介质界面处的生成-复合过程。发现在 P+ 源极接触处测得的电流与栅极脉冲的频率成正比,证明了电荷泵浦装置的正确性 [20],[21]。因此,即使我们的基于 SOI 的 TFET 中没有体接触,由于源极和漏极具有相反的掺杂类型,我们仍然可以执行电荷泵浦测量来评估 N it 。对于下面所示的电荷泵结果,栅极由 500 kHz 方波驱动,其边沿时间为 100 ns,幅度为 1.5 V,基准电平为 0 V,脉冲占空比为 50%。
于临时股东大会日期,245,398,800股,包括,包括136,302,015股非上市股份及109,096,785股h股。于临时股东大会日期,(i)(i)本公司概无持有库存股份(包括持有或存置于由香港中央结算有限公司建立及运作的中央结算及交收系统的任何库存股份),因此于临时股东大会上并无库因此于临时股东大会上并无库(I),因此于临时股东大会上并无库因此于临时股东大会上并无库(ii)(ii)本公司概无购回待注销之股份。出席临时股东大140,027,027,52525252525252525252525252525252525252525252525252525252525252525.0.0.0.06%6%6%。
在EGM之日,有权参加EGM提议的决议的股份和股份总数为245,398,800,其中包括136,302,015股份,其中包括136,302,015股股份和109,096,096,785小时。在EGM之日起,(i)公司没有持有的财政部股份(包括由香港证券清算公司建立和运营的中央清算和和解系统持有或存放的任何财政部股票),因此没有在EGM上行使财政部股票的投票权; (ii)没有公司回购待定的股票。股东的数量和授权的代理人参加了EGM。股东和授权的代理人持有140,027,525股股票,占EGM,约占具有投票权的已发行股票总数的57.06%。