MAEDA和同事在固体鼠类中首先发现EPR效应[1,2]。聚合物 - 毒物偶联物为静脉施用了10至100倍的浓度[2-4]。被动靶向的癌症药物在大约30年前首次到达诊所,并批准了一种基于EPR的药物,即一种高乙二醇化的脂质体药物Doxil。纳米载体优先通过被动靶向在实体瘤中渗漏和淋巴引流,因此优先通过被动靶向积聚。混乱的脉管系统和肿瘤微疗法(TME)和保留率的渗透性可导致TME中大分子的积累70倍。由于对恶性肿瘤的支撑至关重要的血管形成而产生的漏水和缺陷的脉管系统,再加上不完善的淋巴引流,允许EPR效应。肿瘤脉管系统的直径,形状和密度不规则,与不连续的血管不规则。这导致了几种条件,包括肿瘤中的杂种灌注,从流体,缺氧和酸性环境的外部灌注压力升高[5]。基于EPR的药物输送取决于各种因素,包括循环时间,靶向以及克服障碍的能力,这些因素取决于药物颗粒的大小,形状和表面特性。被动靶向主要基于扩散机制。结果,大小是EPR依赖性输送过程中的关键因素。形状和形态在被动靶向中也起着重要作用。研究表明,大约40至400 nm的纳米颗粒尺寸范围适合确保长期循环时间,并增加了肾脏清除率降低的肿瘤的积累[6]。通常,刚性的刚性,尺寸为50至200 nm的球形颗粒具有长期循环的最高趋势,以避免肝脏吸收
(1)水是地球上最重要的资源之一,但通常被认为是理所当然的。尽管它丰富,但现实是,只有一小部分世界水是新鲜的,可用于人类使用。随着人口增加,气候变化和工业需求的增加,我们水资源的压力正在增长。这不仅使节水不仅是集体责任,而且是至关重要的个人义务。每个人为保存水的努力可以显着影响未来子孙后代的这一重要资源(2)个人节水工作如此重要的主要原因之一是小动作的累积效应,这似乎是自身。但是,当乘以数百万人时,这些行动可能会导致大量的节水。例如,一次滴水的水龙头每天可以浪费15升水。想象一下,如果城市中的每个家庭只修复了一个漏水的水龙头,就可以节省水。这突出了集体个人行动减少水废物的力量。(3)此外,为节水提供的个人努力通常会导致更大的认识和教育。当个人采取措施节省水时,他们会更加意识到自己的用水和该资源的重要性。这种意识可以在社区内传播,激发他人采取类似的做法。例如,一个在家里安装节水设备的家庭可能会鼓励邻居和朋友也这样做,从而产生连锁反应。这种基层保护方法在大规模倡议可能缓慢执行或缺乏支持的领域中特别有效。(4)除了日常习惯外,个人还可以通过更重要的生活方式选择来有所作为。例如,选择在花园中抗旱的植物并支持水有效的农业都可以促进节水。农业,尤其是牲畜种植,是全球最大的水消费者之一。通过支持可持续的农业实践,个人可以间接减少食物的水足迹。
为了人类的运气,与小型太阳能相比,太阳能较小。即使这些是个好消息,这也使训练能够建模太阳能活动的机器学习算法具有挑战性。因此,太阳能监视应用程序(包括量)是预测的,因此由于缺乏输入数据而征服。为了克服这个问题,可以利用生成深度学习模型来产生代表太阳活动的合成图像,从而补偿大事件的稀有性。本研究旨在开发一种可以生成太阳的合成图像,具有特定强度的能力。为了实现我们的目标,我们引入了一个脱氧概率模型(DDPM)。我们用SDO航天器上大气图像组件(AIA)仪器进行了精心制作的数据集训练它,该仪器特别是171Å带,该乐队捕获了冠状环,纤维,纤维,浮雕和活动区域的图像。使用Heliophysics事件知识库选择了来自AIA的浮动图像后,采用X射线测量来基于太阳量(a,b,c,m,x)对每个图像进行分类,从而允许对漏水事件进行时间定位。使用群集指标,FRéchetInception距离(FID)和F1分数评估生成模型性能。我们演示了最新的结果,可以产生太阳图像并进行两个使用合成图像的实验。第一个实验训练有监督的分类器以识别这些事件。第二个实验训练基本太阳能是预测指标。我们认为,这只是DDPM与太阳能数据使用的开始。实验证明了其他合成样本对解决不平衡数据集问题的有效性。仍然可以更好地了解太阳能竞赛中的DINOISING DI遇到的概率模型的发电能力是预测,并将其应用于其他深度学习和物理任务,例如AIA到HMI()图像翻译。
不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
肠壁是第一道防线,可防止从管腔进入系统环境的各种有害物质。障碍功能受损,随之而来的有害物质转移到系统性循环(“渗漏肠”)中是许多胃肠道,自身免疫,心理和代谢疾病的中心主题。益生菌已成为维持肠道完整性并解决“肠道渗漏”的有前途的策略。在体内分析中使用硅,体外和鸟类,我们先前表明,从肉鸡鸡具有良好的安全prifiles具有良好的安全性。与最近的一项研究一致,在这里我们表明,路易特林。每天对Sprague Dawley大鼠大鼠进行高剂量的高剂量R. Reuteri 3630和3632,但发现没有不良影响是安全的。更重要的是,通过下调炎症细胞因子并上调鼠标渗漏肠胃肠道肠道肠道的抗炎细胞因子,通过下调炎症细胞因子和上调抗炎细胞因子,从而显着降低了与酒精诱导的肠道相关的标记。而L. reuteri 3630细胞和上清液没有激活,但L. reuteri 3632细胞但没有上清液显示AHR的激活,AHR是调节肠道和免疫稳态的关键转录因子。L. reuteri 3630在乳酸杆菌物种的典型形态学中是奶油白色,而L. reuteri 3632显示出独特的橙色色素沉着,即使在传播了480代后,也稳定。我们确定了L. Reuteri 3632中的稀有聚酮化合物生物合成基因簇,该基因可能编码为橙色颜料的二级代谢产物。类似于Reuteri 3632细胞,纯化的橙色代谢物激活了AHR。全部,这些数据提供了有关系统发育相关性,安全性,功效的证据,以及R. Reuteri 3630和3632的可能作用机理之一,用于潜在的益生菌应用,以解决人类中“漏水”和相关的病理。
亚利桑那州卢克空军基地,电话:(623) 856-6901 如果您租住的房产危害您的健康和/或安全,您有哪些权利?亚利桑那州《房东房客法案》鼓励房东和房客维护和改善住房质量。这套法律记录了房东房客关系中各方的权利、义务和补救措施。一般来说,房东必须遵守所有影响居民健康和安全的建筑规范,房客必须及时支付租金并将房产保持在合理的状态。虽然各个城镇的健康和安全规范各不相同,但典型的违规行为包括楼梯损坏、电线裸露或屋顶漏水。您有权拥有一间适合居住的公寓。如果公寓或公寓大楼的公共区域处于危险状态或不安全或不适合居住,房东必须及时解决问题。窗户破损、门锁不上以及鼠患都是房东必须立即解决的问题的例子。请参阅 ARS 33-1324(A)(2)。您有权享有安全、清洁的公共区域。公寓大楼的公共区域是所有房客都可以使用且必须共享的任何地方。这通常包括公共走廊、休息室、室外庭院、游泳池、洗衣房或所有房客共享的任何其他场所。请参阅 ARS 33-1324(A)(3)。您有权享有运转良好的设施。房东有义务保持电气、管道、卫生、供暖、通风、空调和其他基本设施处于良好的运转状态。请参阅 ARS 33-1324(A)(4)。您有权获得充足的垃圾清理服务。房东必须为您提供合适的垃圾桶或垃圾箱,并确保及时清除垃圾,以免造成虫害和/或健康危害。请参阅 ARS 33-1324(A)(5)。您有权随时使用自来水和适量的热水。您有权使用空调,如果您的租赁协议中有规定,或者由房东安装,即使租赁协议没有提到这一点。请参阅 ARS 33-1324(A)(6)。您有权获得一份签署的租约副本以及业主和经理的姓名和地址。您还有权通知您租赁或租用的房产是否可能被取消抵押品赎回权。
1,2 学生,NHVPS,班加罗尔 3 讲师,NHVPS,班加罗尔 摘要:自 20 世纪 30 年代以来,宇航服一直是太空探索不可分割的一部分。在 21 世纪,太空探索面临着比以往更多的挑战,为了满足日益增长的需求,一些公司开始考虑宇航服设计。宇航服存在许多问题,包括笨重、水循环问题、过时等 [13]。这些问题都有不同的解决方案,但这些公司的任务是将所有这些问题解决后整合到一件宇航服中。这些问题通过采用混合机械压力和聚乙烯宇航服得到了解决。与麻省理工学院的 BioSuit 类似,我们的宇航服使用机械压力来提供必要的压力,但通过使用相变材料 Rubitherm RT82,BioSuit 不再需要使用电源持续供热。聚乙烯纳米颗粒层可提供必要的辐射防护。关键词:机械压力、聚乙烯、石墨烯、碳纳米管、相变材料、凯夫拉简介:宇航服是在超地球条件下保护人体的服装。它们主要为宇航员提供压力、氧气、水、冷却、防电离辐射和微陨石的保护。现有的宇航服被称为舱外机动装置 (EMU)。SpaceX 等私人组织已于 2026-2027 年启动火星登陆计划 [4]。随着这一目标的临近,SpaceX、NASA、JPL 和其他公司一直在寻找适合这项任务的宇航服。由于太空技术的高速发展,当今世界对更好的宇航服的需求比以往任何时候都更为迫切。目前的宇航服存在许多问题,如漏水 [8]、音频/无线电通信问题、行动障碍等。解决这些问题对于宇航员的安全是必要的,尤其是考虑到未来的火星任务即将到来,而这类任务需要稍微多功能的设计。就火星而言,开发宇航服需要我们考虑到其恶劣的气候,那里辐射高,大气压只有 600-700 Pa。 [1] 我们也知道太空中的压力为零,所以深空和火星宇航服的开发有很大不同。因此,我们的目标是打造一套适用于这两种任务的多功能宇航服。文献综述:NASA xEMU https://oig.nasa.gov/docs/IG-21-025.pdf
爱荷华州杜比克,2020 年 6 月 25 日 — Cartegraph 今天宣布收购领先的设施管理和空间规划软件提供商 PenBay Solutions, LLC。将 PenBay 以位置为中心的设施管理功能与 Cartegraph 的资产、工作和资源管理解决方案相结合,为公共和私人组织提供了真正全面的基础设施管理平台。地方政府、公用事业、大学和商业园区所有者可以使用这个由 Esri 支持的平台来管理其建筑和基础设施组合中的运营和维护活动。反过来,软件用户将通过更明智的数据驱动决策优化其资产性能、提高效率、提高空间利用率、最大限度地利用资源并降低成本。“基础设施所有者的工作非常重要。道路、建筑、公园和水网都是需要持续优化的长期投资,”Cartegraph 首席执行官 Josh Mallamud 说。“这就是我们专注于将领域专业知识嵌入我们的产品和服务并为客户成功投入如此多资金的原因。我们开发、实施和支持我们的平台 — 与我们的客户进行长期合作,以确保他们能够成功成为其基础设施的最佳管理者。”通过将 Esri 的 ArcGIS 平台的强大功能扩展到室内、室外、地上和地下基础设施管理的各个方面,组织将提高其基础设施资产的性能,延长其使用寿命并优化运营和维护活动的资源分配。无论是重新铺设道路还是修理漏水的水龙头,维护人员都可以随时随地高效地检查任何资产的状况、接收工作任务并跟踪资源(如劳动力、设备和材料)。领导者利用实时仪表板和双向 ArcGIS 集成来权衡各种方案、监控预算、制定资本计划、优化空间分配、制定搬迁计划并向民选官员和选民讲述他们的故事。“我们与 Cartegraph 合作,因为它是市场上最好的运营和维护平台,”Cartegraph 建筑和基础设施董事总经理兼 PenBay Solutions 前首席执行官 Bill Barron 说。 “与一家与我们有着相同以位置为中心和以客户成功为重点的 DNA 的公司合作对我们来说非常重要。通过将这些团队和解决方案整合在一起,我们正在创建一个强大的平台,使基础设施所有者能够推动其关键任务资产的高性能运营。” 所有 Cartegraph 产品均基于 Esri 的基础技术构建。该平台在每个屏幕上都有地图,利用位置作为统一的数据点 - 推动室内和室外资产、工作和空间管理的紧密集成工作流程。
由于不稳定的动脉粥样硬化颈动脉斑块引起的血栓栓塞引起的缺血性中风占所有缺血性中风的15-25%(1)。内部新血管形成(IPN)是斑块脆弱性的特征,与病变破裂的风险增加和随后的缺血性中风有关(2)。因此,用IPN鉴定颈动脉斑块对于靶向预防中风的治疗替代方法至关重要。病理IPN是因先前存在的Vasa dasorum Vasorum Vasculature的新形成的未成熟和漏水血管的发芽,它延伸到整个动脉壁并朝向斑块核(3)。这种新血管化被认为是由于氧气和慢性动脉粥样硬化病变中代谢活性增加而产生的营养需求增加而发生的(4)。仍然,尚未完全了解导致IPN的机制,并且使用标准多普勒超声方法检测这些微容器具有小血流信号是具有挑战性的。在最近的研究中,我们引入了一种新型的超声波化方法,即精美的微血管成像(SMI),该方法利用了一种算法,该算法有效克服了标准超声在IPN的可视化和量化中面临的挑战。我们证明SMI可与IPN评估的对比增强超声相媲美(5)。成纤维细胞生长因子(FGF)-23是一种骨分泌的激素,参与肾脏和维生素D代谢中的磷酸盐稳态(6)。klotho在肾小管中高度表达,在肾小管中下调 - 磷酸钠共转运蛋白(7)。FGF-23调节其共受体Klotho的表达;作为一个集体单位,他们将目标组织内的FGF受体(FGFR)汇总成三聚体信号传导复合物,从而促进了FGF-23的生理学以及病理生理功能的执行。升高的FGF-23是肾功能相对保存的患者末期肾脏疾病的独立危险因素,并且在各种慢性肾脏疾病(CKD)范围内死亡率(8)。然而,FGF-23的血清水平也与较高的心血管疾病风险(CVD)有关,例如心肌梗塞,缺血性中风和心力衰竭,并且这些关联不限于肾功能受损的患者(9,10)。的确,在一项基于人群的研究中,FGF-23水平升高的个体具有与CKD无关的颈动脉粥样硬化的显着负担(11)。虽然FGF-23的血浆水平升高与普通颈动脉的内膜膜厚度增加有关,但有关颈动脉斑块不稳定性的FGF-23的数据稀缺或缺乏(7)。基于其在动脉粥样硬化中的作用,我们假设FGF-23的血浆水平与IPN和斑块不稳定性的存在有关,如SMI评估所测量。在这项试验研究中,我们在我们的SMI研究队列中包括了29例颈动脉粥样硬化患者中测试了这一假设,这些患者曾在我们的SMI研究队列中包括用于生长因子分析的血浆。
Silo AI 在芬兰为水和区域供热系统运营商试行智能数据驱动资产优化服务 利用 iTwin 平台将网络可视化工作量减少了 50%,从而改善了资产维护计划和能源效率 • Silo AI 为城市管道运营商开发并试行了一种智能数据驱动资产优化解决方案。 • 这项服务称为 Silo Flow,可以预测管道泄漏并确定区域供热系统的潜在冷却优势。 • 利用 iTwin 平台促进数据集成并提供整个管道网络的整体可视化。 • Silo Flow 将使客户网络的能源效率、性能和生产力提高几个百分点。 利用人工智能优化城市管道基础设施系统 作为北欧最大的私人人工智能 (AI) 实验室,Silo AI 开发可定制的、由 AI 驱动的解决方案和产品,实现城市基础设施、能源和物流的智能监控和预测。为了提高芬兰供水和区域供热网络的性能、可靠性和能源效率,Silo AI 发起了一个项目,为城市管道运营商开发一种智能、数据驱动的资产优化服务。Silo AI 业务开发主管 Harri Kaukovalta 表示:“很大一部分供水和区域供热网络即将到期,漏水不仅给网络运营商和社会带来了高昂的成本,也给管道网络客户带来了不适。”网络性能低下和泄漏增加了燃料消耗和水浪费,这不仅对商业不利,而且对环境也不利。Silo AI 与赫尔辛基环境服务局 HSY 和芬兰最大的电网运营商之一合作试行他们的解决方案,使这些系统运营商能够提供更可持续的能源服务,从而优化区域供热资产的性能并消除管道泄漏。Kaukovalta 说:“供热和供水的可靠性对人们有直接影响。”该系统优化服务名为 Silo Flow,可帮助预测网络故障并优先进行主动资产维护,以避免昂贵的维修和潜在的网络关闭,确保高效可靠的服务,同时最大限度地减少对环境的影响。分散的数据妨碍整体网络概览芬兰维护着超过 16,000 公里的区域供热管道。Kaukovalta 说:“尽管芬兰的区域供热系统维护得很好,但平均每 10 公里网络每年就会发生一次泄漏。”水网也是如此。Silo AI 试图利用人工智能和数据分析来查明容易发生泄漏的区域并优先进行管道维护改造。然而,管道优化和管道运行需要结合多种数据源和数据格式,从这些数据中分析出的数据和结果