功能描述 RF 输入 (RF IN ) RF 输入是来自天线的不平衡输入。任何标准或定制的 50 天线均可与接收器一起使用。P2110B 已针对 902-928MHz 频段的操作进行了优化,但在此频段之外操作时效率会降低。有关定制频率要求,请联系 Powercast。 RF 输入必须与地隔离。对于直流短路的天线,应与天线串联一个高 Q 直流阻塞电容器。 存储电容器选择 (V CAP ) P2110B 需要一个连接在 V CAP 的外部存储电容器。电容器的值将决定 V OUT 引脚可用的能量。电容器的漏电流应尽可能小。建议电容器的漏电流在 1.2V 时小于 1μA。电容器 ESR 应为 200m 或更小。较小的电容器充电速度会更快,但会导致工作周期更短。较大的电容器充电速度会更慢,但会导致工作周期更长。可以使用以下公式估算所需的最小电容值。
材料特性、环境因素和产品设计的结合可能会产生意想不到的副作用。例如,漏电流可能会随着时间的推移而增加,最终可能导致硬电弧和灾难性故障。过多的漏电流可能会在高阻抗反馈电路中产生错误,从而导致电压随时间和温度变化而漂移和稳定性问题。FR4 PWB 基板特别容易受到污染和吸收水分的影响。吸收的水分会降低 FR4 的玻璃化转变温度 (Tg),使组件在具有动态热条件的应用中容易发生现场故障。封装系统中的杂质、不正确的填料或不完全固化可能会导致过高的漏电流,这些漏电流会随时间和温度的变化而呈非线性和不稳定状态,从而可能破坏高压系统的稳定性。另一个例子是高压电路特别容易受到电化学迁移的影响。水分会促进离子腐蚀形成导电细丝。重新分布的金属离子可能会发生枝晶生长。高压应力会加速这些电化学过程(尽管锡晶须可以在没有电磁场的情况下形成)。
静电放电 (ESD) 引起的损坏是集成电路的主要失效之一。在当今集成电路所采用的 7nm FinFET 工艺中,由于 FinFET 栅极氧化层的厚度减小以及高 k 电介质的可靠性较低,在静电放电 (ESD) 冲击下极其脆弱[1-3],并且遭遇非致命的 ESD 冲击后,ESD 保护性能会逐渐下降[4,5]。一些 ESD 建模和仿真技术已被用于 FinFET 工艺,以帮助分析 ESD 冲击下的 ESD 保护特性[6-9]。ESD 保护二极管被认为是一种很有前途的 ESD 保护器件[6-8]。具有高鲁棒性的二极管串硅控整流器 (DSSCR) 也被认为是以前技术节点的 ESD 保护装置 [ 10 – 15 ],但由于其高漏电和闩锁的较大回弹,它不再适用于 7 nm 技术。FinFET 工艺的 ESD 设计仍然是一个巨大的挑战。目前还没有一种具有足够低触发电压 (Vt) 和高故障电流 (It2) 的高鲁棒性 ESD 保护装置。在本文中,我们提出了一种基于 7 nm FinFET 工艺的新型硅控整流器嵌入式二极管 (SCR-D)。制造并分析了具有不同关键设计的这种保护的特性。
摘要:本文提出了一种具有单端特性的 6T 单元,以提高稳定性、降低能耗、降低漏电功率。该单元与规格优良的 10 和 12 晶体管结构进行了比较。然而,上述结构设计为具有最佳参数,尺寸小,晶体管数量最少,从而减小了单元尺寸。在某些参数方面,例如写入噪声容限,该结构与其他结构相比具有最佳优点,甚至高于 12 和 10 晶体管的结构。通过切断要写入为“1”的存储节点的下拉路径来增强写入操作;读取操作无需切断下拉路径即可执行。在 VDD=0.4V 时,与传统的 6T 相比,所提出的结构的静态功率、读取容限、写入容限、读取能量和写入能量分别优越 33%、50%、215%、9% 和 5%。与标准 6T 结构相比,电气质量指标 (EQM) 参数提高了约十倍,表明新结构的价值已经得到体现。对 32nm 技术中 5,000 次读写产量的蒙特卡洛模拟表明,我们的单元产量比典型的 6T 单元高出 2 倍和 3.4 倍。因此,对于需要低能耗和高稳健性的应用,建议的 6T 单元是一个合适的选择。
摘要:本文研究了硅基Al 2 O 3 在γ射线下的辐照响应,对原子层沉积的Al 2 O 3 基金属氧化物半导体结构进行γ射线辐照,总剂量为1.2 Mrad(Si)/2.5 Mrad(Si)/4 Mrad(Si),采用电子、物理和化学方法研究了辐射感生电荷的产生、传输和捕获特性。首先,Al 2 O 3 中辐射感生捕获电荷密度高达10 12 cm − 2 ,辐照下有效捕获效率为7–20%;其次,随着辐射总剂量的增加,通过Al 2 O 3 的漏电流变化不大。第三,Al 2 O 3 中的氧空位、Al 2 O 3 /Si界面处的O悬空键和Al-Si金属键是Al 2 O 3 /Si体系中主要的辐照诱导缺陷,辐照后Al 2 O 3 与Si之间的价带偏移减小。从漏电流和结晶特性可以看出Al 2 O 3 具有抗辐照性能,但Al 2 O 3 /Si结构中辐照诱导的电荷捕获和新缺陷不容忽视。本文为Al 2 O 3 基MOS器件的空间应用提供了参考。
在所有神经网络中,PIKING 神经网络 (SNN) 最忠实地模拟了人脑,并且被认为是处理时间数据最节能的网络。人工神经元和突触是 SNN 的组成部分。最初,SNN 的硬件采用复杂的互补金属氧化物半导体 (CMOS) 电路实现,其中单个神经元或突触由多个晶体管实现,这在面积和能耗方面非常密集 [1]。2008 年忆阻器的发现促进了使用单个双端器件实现人工突触的发展 [2],[3]。然而,尽管人工神经元同样重要,但使用单个器件实现人工神经元的研究还不够深入。最近,阈值开关忆阻器 (TSM) 器件 [4]、非挥发性忆阻器 [5]、相变材料 (PCM) [6]、基于铁电材料的场效应晶体管 (FET) [7]、[8] 和浮体晶体管 [9] 已被用于演示用于 SNN 的漏电积分激发 (LIF) 神经元。二维材料的忆阻特性为利用这些原子级薄系统实现人工神经元提供了机会,这将实现神经网络硬件的最终垂直扩展 [10]-[12]。H Kalita 等人演示了一种基于 MoS 2 /石墨烯 TSM 的人工神经元,但阈值电压高、开关比低、导通时间短。
摘要—本文报告了一项综合研究,该研究优化了使用镍、钛和钼接触金属制成的 3.3 kV 结势垒肖特基 (JBS) 二极管的 OFF 和 ON 状态特性。在此设计中,使用与优化终端区域相同的植入物来形成 JBS 有源区域中的 P 区。P 区的宽度和间距各不相同,以优化器件的 ON 和 OFF 状态。所有测试的二极管均显示出高阻断电压和理想的开启特性,最高额定电流为 2 A。然而,发现漏电流和肖特基势垒高度 (SBH) 与肖特基与 p + 区域的比例成比例。没有 p + 区域的全肖特基和具有非常宽肖特基区域的肖特基具有最低的 SBH(Ni 为 1.61 eV、Mo 为 1.11 eV、Ti 为 0.87 eV)和最高的漏电流。肖特基开口最小(2μm)的二极管具有最低的关断状态漏电,但它们受到周围 p + 区域的严重挤压,从而增加了 SBH。性能最佳的 JBS 二极管是间距最窄的 Ni 和 Mo 器件,p + 植入物/肖特基区域均为 2μm 宽。这些器件提供了最佳的平衡器件设计,具有出色的关断状态性能,而肖特基比保证了相对较低的正向压降。
电穿孔会导致细胞膜通透性暂时增加,并导致兴奋细胞和非兴奋细胞的跨膜电压 (TMV) 发生长时间变化。然而,这些 TMV 变化的机制仍有待完全阐明。为此,我们使用 FLIPR 膜电位染料将两种不同的细胞系暴露于单个 100 µ s 电穿孔脉冲后,在 30 分钟内监测 TMV。在表达极低水平内源性离子通道的 CHO-K1 细胞中,脉冲暴露后的膜去极化可以用非选择性漏电流来解释,这种漏电流一直持续到膜重新密封,使细胞能够恢复其静止的 TMV。在表达多种不同离子通道的 U-87 MG 细胞中,我们意外地观察到初始去极化阶段之后的膜超极化,但仅在 33 ◦ C 时发生,而在 25 ◦ C 时未发生。我们开发了一个理论模型,该模型得到了离子通道抑制剂实验的支持,该模型表明超极化在很大程度上可归因于钙激活钾通道的激活。离子通道激活与 TMV 和细胞内钙的变化相结合,参与各种生理过程,包括细胞增殖、分化、迁移和凋亡。因此,我们的研究表明离子通道可能是影响电穿孔后生物反应的潜在靶点。
摘要:BTSP-4445L 和 M 3 -44-8 电池中使用的温度传感器组件已进行了修改,以消除与 Embraer 145 系列飞机上的 EICAS 系统连接时的温度误解。背景:20 世纪 70 年代,Marathon 开发了一种模拟温度传感和显示系统,该系统由基于热敏电阻的温度传感器和安装在驾驶舱内的仪表组成,用于指示电池的内部温度。该系统仍在 Jetstream 31、Embraer 110 和 120 以及 deHaviland Dash 7 和 8 飞机上使用。由于系统可靠性高,决定在 ERJ-145 飞机中使用该传感器组件。此后已确定,ERJ-145 系列飞机上使用的数字 EICAS 系统在与温度传感设备接口时需要更高的精度。电阻读数的微小波动和电池温度传感设备中的漏电干扰可能会被当今敏感的航空电子软件误解,从而导致错误的温度读数。出于这些原因,MarathonNorco Aerospace (MNAI) 工程部门重新设计了通用温度传感器,以提高 ERJ-145 系列飞机上电池温度传感的接口质量。已为重新设计的带板温度传感器组件创建了新的零件号。温度传感器线的布线已更改,以便于测试和维修。(参见第 4 页的图 1)。生产切入:新的温度传感器组件将被标识为 29529-003。部件编号 29529-002 将继续生产用于模拟应用。
宽带隙半导体 SiC 和 GaN 已商业化用于电力电子和可见光至紫外发光二极管(例如 GaN/InGaN/AlGaN 材料系统)。对于电力电子应用,SiC MOSFET(金属 - 氧化物 - 半导体场效应晶体管)和整流器以及 GaN/AlGaN HEMT 和垂直整流器在高功率水平下提供比 Si 器件更高效的切换,现在正用于电动汽车及其充电基础设施。这些器件还可应用于涉及高温和极端环境的电动飞机和太空任务。在本综述中,将它们的固有辐射硬度(定义为对总剂量的耐受性)与 Si 器件进行了比较。宽带隙半导体的固有辐射硬度更高,部分原因是它们产生缺陷的阈值能量(原子键强度)更大,更重要的是因为它们的缺陷复合率高。然而,现在人们越来越认识到,SiC 和 GaN 功率器件中重离子引起的灾难性单粒子烧毁通常发生在电压约为额定值的 50% 时。在高线性能量传输速率和高施加偏压下,离子诱导泄漏发生在外延区域内的临界功率耗散之上。沿离子轨道耗散的功率量决定了漏电流衰减的程度。最终结果是沿离子轨道产生的载流子发生碰撞电离和热失控。发光器件不受这种机制的影响,因为它们是正向偏置的。应变最近也被确定为影响宽带隙器件辐射敏感性的一个参数。