丝兰(Asparagaceae,agavoideae)的当前分类基于形态学特征,主要是基于水果类型,碳纤维,叶缘和花序类型。为了研究这些特征的演变及其作为丝兰中某些群体的突触形态的潜在分类学意义,对44丝甘菌和八种外部种类进行了系统发育分析。差异时间会产生适当的系统发育框架,以研究形态特征的演化。最大似然和贝叶斯推论分析显示,与丝兰的这两个属中的任何一个相比,Hesperoyucca和Hesperaloe之间的系统发育关系更紧密。先前提出的属内提出的系列没有被回收为单系,但基于水果类型,我们恢复了两个主要进化枝,我们在这里命名了Aloifolia和crade Rupicola。YUCCA茎的年龄和牙冠组的年龄分别为14.34(95%HPD:14.64–14.2)和7.45(95%HPD:11.31–3.48)年龄。最近的多元化事件发生在肉体和干果的物种中。Yucca是单系的,具有两个主要进化枝,对应于带有干果的物种(进化枝Rupicola)和肉质的果实(Aloifolia)。在两个进化枝中都观察到了部分地理一致性。分散类型可能是该属多元化的关键特征。叶边缘,碳纤维和花序类型与系统发育关系不一致。
(A)神创说(自然神学论、创造论)认为物种皆适应于其生存环境,不随时间而改变各性状之特征(B)林奈认为物种皆由演化而来,其分类系统中,他并非神学论或创造论的支持者(C)拉马克认为亲代及其后代持续锻炼某一器官,此器官会发生适应性的改变(D)居维业提出灾变说,认为地球经历数次大灭绝,每次大灭绝都有新的生物被创造出来(E)达尔文发现雀鸟物种在加拉巴哥群岛与同纬度海岛不同,与环境有关而与演化无关。 ACE
本博士论文须遵守 Recognition-NoCommercial 4.0 许可证。知识共享西班牙。本博士论文已获得致谢 - 非商业 4.0 许可证的许可。知识共享西班牙文。本博士论文已获得 Creative Commons Attribution-NonCommercial 4.0 许可。西班牙许可证。
摘要:将序列变化与表型效应联系起来对于有效利用大型基因组数据集至关重要。在这里,我们提出了一种新的方法,将定向进化与蛋白质语言建模相结合,以表征水稻免疫受体的自然发展变体。使用高通量定向进化,我们设计了水稻免疫受体PIK-1,以结合和识别真菌蛋白AVR-PIKC和AVR-PIKF,它们通过当前特征的PIK-1等位基因避免检测。在此数据上对蛋白质语言模型进行了微调,以将序列变化与配体结合行为相关联。然后使用此建模来表征3,000个水稻基因组项目数据集中发现的PIK-1变体。两种变体因与AVR-PIKC的结合高度评分,并且体外分析证实了它们在野生型PIK-1受体上的提高配体结合。总体而言,这种机器学习方法确定了水稻中有希望的疾病抗性来源,并显示了探索其他感兴趣蛋白质的表型变化的潜在效用。
摘要:本研究使用神经网络探索退役地球静止卫星复杂的纵向进程。目标是建模和预测卫星在时间维度上的纵向动态。历史卫星经度数据经过彻底的预处理,以训练所有六颗退役卫星的单输入和三输入配置的时间序列神经网络,从而获得全面的纵向行为洞察。结果显示出令人印象深刻的结果:预测和测量经度之间的平均均方误差 (MSE) 为 1.55x10 -3 ,回归接近 1。这种收敛意味着所采用的神经网络方法与复杂的问题领域之间存在很强的一致性。这些结果强调了所选神经网络方法在解决退役地球静止卫星轨迹建模所带来的挑战方面的适用性和有效性。这项研究的影响涵盖了各个领域。深入了解长期轨道变化有助于理解卫星行为,增强轨迹预测和卫星管理和空间技术进步的决策。此外,该研究还强调了准确预测卫星退役后行为的重要性。这有助于更好地规划任务、优化资源,并制定更有效的空间垃圾处理策略。关键词:退役卫星、地球静止轨道、神经网络、纵向演化、轨道动力学。
在本文中,我们详细分析了变分量子相位估计 (VQPE),这是一种基于实时演化的基态和激发态估计方法,可在近期硬件上实现。我们推导出该方法的理论基础,并证明它提供了迄今为止最紧凑的变分展开之一,可用于解决强关联汉密尔顿量。VQPE 的核心是一组具有简单几何解释的方程,它们为时间演化网格提供了条件,以便将特征态从时间演化的扩展状态集中分离出来,并将该方法与经典的滤波器对角化算法联系起来。此外,我们引入了所谓的 VQPE 的酉公式,其中需要测量的矩阵元素数量与扩展状态的数量成线性比例,并且我们提供了噪声影响的分析,这大大改善了之前的考虑。酉公式可以直接与迭代相位估计进行比较。我们的结果标志着 VQPE 是一种自然且高效的量子算法,可用于计算一般多体系统的基态和激发态。我们展示了用于横向场 Ising 模型的 VQPE 硬件实现。此外,我们在强相关性的典型示例(SVP 基组中的 Cr 2)上展示了其威力,并表明只需约 50 个时间步就可以达到化学精度。
在大流行事件期间,诸如保持社交距离之类的策略对于减少同时感染和减轻疾病传播至关重要,这与医疗系统崩溃的风险非常相关。尽管可以推荐甚至强制实施这些策略,但它们的实际实施可能取决于人群对潜在感染相关风险的认知。例如,当前的 COVID-19 危机表明,有些人比其他人更容易保持孤立。为了更好地理解这些动态,我们提出了一个流行病学 SIR 模型,该模型使用进化博弈论将社会策略、个人风险感知和病毒传播结合在一个过程中。特别是,我们考虑一种在人群中传播的疾病,其主体可以在自我隔离和不顾任何流行病风险的生活方式之间进行选择。策略的采用是个人的,取决于感知到的疾病风险与隔离成本的比较。博弈收益决定策略的采用,而流行病过程决定主体的健康状况。同时,感染率取决于主体的策略,而感知到的疾病风险取决于受感染主体的比例。我们的结果表明,感染浪潮反复出现,这在以往自愿隔离的历史流行病场景中很常见。特别是,随着人们的疾病意识降低,这种浪潮会再次出现。值得注意的是,风险认知是控制感染峰值大小的基础,而最终的感染规模主要由感染率决定。意识低下会导致单一而强烈的感染峰值,而疾病风险越大,峰值越短,但频率越高。提出的模型自发地捕捉了大流行事件的相关方面,突出了社会策略的基本作用。
摘要 裂纹的存在会导致结构钢在临界屈服强度以下失效。本文的主要目的是简化和整合应力集中、断裂应力、应力强度因子、裂纹尖端张开位移和 J 积分参数的数学推导,从第一原理开始,并应用于疲劳。本文解释了从理论概念中断裂力学参数的数学推导,包括使用基于应变的方法预测疲劳寿命的替代方法。只有当缺口半径远大于零时,缺口周围的应力集中才会发生,当裂纹尖端半径等于零时,尖锐裂纹处的应力场会显示奇异性。此外,钝化裂纹尖端违反了应力奇异性,而裂纹尖端张开位移和 J 积分参数显示了裂纹延伸超过零裂纹尖端半径的解,因此用于表征具有钝化裂纹尖端的材料应力场。本文强调了使用 J 积分和裂纹尖端张开位移参数而不是应力强度因子来表征疲劳裂纹扩展的好处。本文将主要使核能、航空、石油和天然气行业的工程师和专家受益。
摘要:本研究旨在通过理论和实验研究来扩展对 3.2 mm 厚 Ti-6Al-4V 合金多层壁直接激光沉积 (DLD) 过程中应力场演变的理解水平。工艺条件接近于通过 DLD 方法生产大尺寸结构的条件,因此样品具有相同的热历史。开发了一种基于隐式有限元法的模拟程序,用于应力场演变的理论研究。通过使用实验获得的 DLD 处理的 Ti-6Al-4V 合金的温度相关力学性能,模拟的准确性显著提高。通过中子衍射实验测量了堆积中的残余应力场。使用平面应力方法和力-动量平衡确定了对测量应力具有决定性的无应力晶格参数。分析讨论了残余应力场不均匀性对实验测量精度和模拟过程有效性的影响。基于数值结果发现,全厚度应力分布的不均匀性在中心横截面达到最大值,而在堆积端部,应力分布几乎均匀。靠近基体的堆积端部主应力分量为拉应力。此外,计算出的等效塑性应变在堆积端部附近达到5.9%,此处沉积层已完成,而塑性应变实际上等于实验测量的DLD加工合金的延展性,即6.2%。通过力-动量平衡和平面应力方法获得的实验测得的残余应力略有不同。
其电子结构的特性观察到独特的物理现象,例如手性[15-17]和轴向重力异常,[18]圆形光钙效应,[19-20]手性声波,[21-22]表面状态增强的Edelstein效应[23]或最近提出的Chiral Hall-Chiral Hall-Hall-Hall-Hall-Hall-Hall-Hall-Hall-feff。[24]大多数这些效果的观察取决于WSM的拓扑结构是否可以轻松访问。In this regard, the ability to sup- press non-topological (trivial) surface states, as well as to modify the Fermi-level posi- tion to get a desired Fermi surface topology, would allow full access to unveil the role of topological surface states on physical observables, and, in addition, to construct on-demand Fermi-surfaces to harness electrical, acoustic or optical measurable outputs.到目前为止,通过探索不同的WSM来实现电子结构的多样性,但是对同一材料中拓扑带的形状和大小的真实控制仍然存在,这主要是由于缺乏自下而上的超高维库姆合成方法,从而可以控制表面终端和Fermi-Level的位置,以通过dopsing或Fermi-Level的位置来控制。需要克服这一挑战,以实现Fermi级工程的Weyl Semimetal异质结构,从而导致了众多的新型平台,以探索基于拓扑的基本质量和设备应用。在这项工作中,我们展示了I型Weyl Semimetal NBP的电子结构的两个引人注目的修改,它们由于成功的外延薄膜生长合成途径而变得可访问。[25]首先,由于有序的磷末期表面悬挂键的饱和,因此获得了NBP的弓形状(琐碎)表面状态的完全抑制,这表现在A(√2×2×√2)表面重构中。第二,通过化学对表面进行化学掺杂,fermi-Energy经历了大约 + 0.3 eV(电子掺杂)的实质转移,同时保留原始的NBP NBP的谱带特征,从而使拓扑范围的范围优点和点亮点能够达到较大的范围,从而实现了第一个实验性的视觉效果,并实现了范围的范围,并实现了范围的范围,并实现了范围的范围。分子束外延过程。我们的工作打开了实现最新理论建议的可能性,例如依赖纯拓扑>