摘要 — 移动机器人团队将在未来探索地外天体表面的任务中发挥关键作用。在遥远、具有挑战性和未知的环境中操作时,设置基础设施和采集科学样本是一项昂贵的任务。与当前的单机器人太空任务相比,未来的异构机器人团队将通过增强的自主性和并行性来提高效率,通过功能冗余来提高稳健性,并从各个机器人的互补能力中受益。在本文中,我们介绍了我们的异构机器人团队,该团队由飞行和驾驶机器人组成,我们计划在 2021 年作为 ARCHES 项目的一部分在意大利西西里岛埃特纳火山的月球模拟地点部署科学采样演示任务。我们描述了机器人的个体能力及其在两个任务场景中的作用。然后,我们介绍其中重要任务的组件和实验:自动任务规划、高级任务控制、光谱岩石分析、基于无线电的定位、类似月球和火星场景中的协作多机器人 6D SLAM,以及自主样本返回的演示。
NRO 正在建造其历史上规模最大、能力最强的空中星座,预计到本世纪末,在轨卫星数量将增加四倍。从地面到轨道再到两者之间的所有创新都是 NRO 进步的核心。艾伦上校重点介绍了即将与行业合作伙伴 Firefly Aerospace, Inc. 和 Xtenti, LLC 一起进行的演示任务,作为快速将能力交付到轨道的一个例子。该演示任务是 NRO 后续研究合同的一部分,该合同将研究太空机动性和多飞行器部署能力。该任务采用 Xtenti 的飞行无关无干扰可调质量共享分配器设备 (FANTM-RiDE) 分配器,计划于明年搭载 Firefly 的 Elytra 飞行器发射。请在未来几个月内继续关注 NRO 的社交媒体频道,了解有关此演示项目的更多信息。
目标是在 2022 年发射 Kanyini,即从项目开始大约 18 个月后。这样就有时间开发卫星平台、集成有效载荷、进行集成测试并交付给发射提供商。在开发阶段的同时,正在制定一项研究计划,以便在进入轨道后充分利用这些系统。这包括早期研究和测试,以支持未来的 SmartSat 能力演示任务,例如 AquaWatch(水质监测)和 I-in-the-Sky(灾害和气候变化管理),涉及高光谱成像和物联网通信。这项研发将确保 Kanyini 支持 SA 在立方体卫星设计和生产方面的能力持续增长。
“自主机载导航”的广义定义是航天器在独立于外部控制和不使用外部信息辅助的情况下确定其轨道并规划路径以实现导航目标的能力,即使在异常条件下也可能如此。自主导航有望对整个 SMD 的任务运行产生直接影响。在 SMD 内,主要受益者将是行星科学部和探索科学战略整合办公室。天体物理学、太阳物理学和地球科学部在 GPS 范围之外飞行的任务也将受益。迄今为止,还没有航天器在多个任务阶段展示过自主导航。演示任务提供了降低风险和帮助实现更广泛采用的机会。
• SpaceX Demo-2 任务成功结束,龙飞船在佛罗里达州彭萨科拉附近的墨西哥湾溅落。Demo-2 机组人员被运回约翰逊航天中心进行飞行后恢复,飞船被送回 SpaceX 进行飞行后处理,并开始为即将到来的 Crew-2 任务进行翻新。 • 2020 财年末,波音公司继续处理 CST-100 Starliner,为重新进行轨道飞行测试 (OFT) 做准备。因此,NASA 未能实现 2020 财年第四季度两个商业合作伙伴完成演示任务的里程碑。 • NASA 的商业载人航天计划和 SpaceX 继续在今年秋天为 Crew-1 发射取得进展,Crew-1 Dragon 完成了最终集成和检查。2021 财年第一季度,运输到 39A 发射台与猎鹰 9 号运载火箭集成,以满足计划中的今年秋天的 Crew-1 发射。 • 美国宇航局的商业载人航天计划于第四季度向业界发布了一份信息请求 (RFI),要求提供亚轨道系统资格和商业载人亚轨道太空运输服务数据。美国宇航局将使用 11 个行业响应来通知亚轨道商业 (SubC) 活动。• 尽管美国宇航局对 COVID-19 的响应限制了对一些 NASA 和承包商设施的访问,但仍在继续执行特定任务的工作,以支持 SpaceX Demo-2 的成功发射、任务操作和机组人员的安全返回。• 整个行业/政府团队的英勇努力使项目在 COVID-19 大流行期间朝着实现强劲的商业 LEO 经济取得了显著进展。但是,由于美国宇航局未能完成两个里程碑——为自由飞行者招标颁发奖项,并且两个商业合作伙伴都完成了演示任务——该 APG 在 2020 财年被评为红色。
与应用空间技术和微重力(ZARM)和德国航空航天中心(DLR)合作,联合国外在航天事务办公室(UNOOSA)提供了Drop Tower实验系列(Droptes)。droptes是在所有主动性访问空间的超高/微重力轨迹下的动手机会,供学生团队在德国的布雷蒙跌落塔进行微重力实验,这是一个基于地面的实验室,高度为146米。unoosa支持团队的旅行费用,DLR资助5滴或弹射器的发射,Zarm在准备和实验活动期间提供了住宿和技术支持。到目前为止,来自6个机构的国际学生团队已经从7轮实验中受益,他们进行了许多不同类型的科学实验和技术演示任务。
摘要 — CADRE(合作式自主分布式机器人探索)是一项月球技术演示任务,由三辆探测车和一个基站组成的团队进行多智能体自主探索。该任务计划于 2024 年作为 IM-3 任务的 CLPS(商业月球有效载荷服务)载荷降落在月球的雷纳伽马地区。CADRE 的目标是演示一组自主探测车如何仅接收来自地球的高级任务,自主探索月球表面的某个区域,并与多静态探地雷达协调进行分布式测量。我们设想,多智能体自主将使未来的任务能够解决月球、火星及其他地方的行星科学中迄今未解答的问题。在本文中,我们描述了为 CADRE 开发的自主架构,包括多智能体协调和单智能体驾驶表面移动性,并讨论了导致选择这种架构的要求和限制。