2 聚氨酯光学幻影的制备与表征 ......................。。11 2.1 简介。。。。。。。。。。。。。。。。。。。。。.................11 2.2 材料和方法 ...................................13 2.2.1 元件材料选择 .。。。。。。。。。。。。。。。。。。。。。13 2.2.2 初步研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.2.3 模型设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.2.4 组织模体制作方法 ................18 2.2.5 模体光学特性测试 ..................20 2.3 结果与讨论 ................................22 2.3.1 吸收特性 ..........................22 2.3.2 散射体特性 ..........................23 2.3.3 幻影光学特性 ...。。。。。。。。。。。。。。。。。。。。24 2.4 结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39
2 聚氨酯光学幻影的制备与表征 ......................。。11 2.1 简介。。。。。。。。。。。。。。。。。。。。。.................11 2.2 材料和方法 ...................................13 2.2.1 元件材料选择 .。。。。。。。。。。。。。。。。。。。。。13 2.2.2 初步研究。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 2.2.3 模型设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.2.4 组织模体制作方法 .................18 2.2.5 模体光学特性测试 ..................20 2.3 结果与讨论 ................................22 2.3.1 吸收特性 ..........................22 2.3.2 散射体特性 ..........................23 2.3.3 幻影光学特性 ...。。。。。。。。。。。。。。。。。。。。24 2.4 结论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39
摘要:漫反射相关光谱是一种用于实时测量脑血流的非侵入性光学方法,在临床监测和神经科学中具有重要的潜在应用。因此,许多研究小组最近一直在研究提高漫反射相关光谱的信噪比、成像深度和空间分辨率的方法。这些方法包括多斑点、长波长、干涉、深度鉴别、飞行时间分辨率和声光检测策略。在这篇评论中,我们详尽地评估了这些最新进展,这些进展可用于评估局限性并指导未来实施漫反射相关光谱的创新,这些创新将在未来几年利用技术改进。
图 3.8. 计算漫反射角的说明。a) 粒子的漫反射将具有相对于表面法线的朗伯分布。b) 通过将表面法线假设为从笛卡尔 z 轴旋转的 Z 轴和在 XY 和 xy 车道交叉线上重叠的旋转 X 轴,只需要两个欧拉角。c) 利用欧拉角,将漫反射计算回主坐标系。d) 最终的粒子反射是镜面反射和漫反射的总和。................................................ 70
摘要 CIE 1976 L*a*b* 色彩空间 (CIELAB) 已广泛且成功地应用于各种应用,包括数字彩色成像、彩色图像质量和色彩管理。它的一个缺点是缺乏色调线性,这是色域映射中的一个关键问题,而 IPT 色彩空间已解决了这一问题,该领域对此进行了广泛应用。这两个空间的一个限制是它们不适用于高动态范围 (HDR) 成像中的颜色问题。这是因为它们在零亮度/亮度处的截距很难确定,并且它们对于比漫反射白色更亮的颜色的适用性不确定。为了解决这些 HDR 问题,提出了两个新制定的色彩空间以供进一步测试和改进,hdr-CIELAB 和 hdr- IPT。它们只是基于用更符合生理学的双曲函数(称为 Michaelis-Menten 方程)替换 CIELAB 和 IPT 中的幂函数非线性,该方程经过优化,可以最接近地模拟漫反射色域的原始色彩空间。本文描述了这些提出的模型的公式,并使用 Munsell 数据与 CIELAB、IPT 和 CIECAM02 进行了比较,进行了一些初步评估。
Carlo Gavazzi 提供种类繁多的光电传感器,广泛应用于包装机械、自动门系统和许多其他工业应用。我们的传感器有漫反射、背景抑制、回射、偏振、直通光束、清晰物体检测和颜色识别等类型。创新和质量是我们市场策略的基础。新型 PD112 传感器具有针对工业应用(例如托盘包装、大型输送机和木材工业)的特定检测模式,并且专为自动门应用而设计。Carlo Gavazzi 还提供一系列光纤型传感器,用于无法使用传统传感器的应用(例如由于空间、温度、大气限制)。
“暗”信号在显示屏上从未低于 #4;降低增益设置。有两个可能的原因:1) “暗”信号缓慢增加并在预定的延迟时间内保持在 #4 级别,通常是由于反射传感模式(如漫反射或会聚)中不必要的背景反射逐渐增加所致。一旦消除了不必要的光信号的原因,或者如果降低增益控制设置以使“暗”条件低于 #4 级别,警报就会重置。2) 在传感事件期间,“暗”信号不会低于 #4 级别。当“暗”传感级别低于 #4 级别时,警报会自动重置(通过降低增益控制设置和/或消除“暗”条件下不必要的光返回的原因来实现)。
在包含镜面的几何结构中,由于积分球的不均匀性,反射的镜面分量可能无法以与漫反射分量相同的效率收集。可以使用校准镜和哑光白色反射标准再次确定与镜面光束相关的误差。确定此错误的方法在附录中给出。镜面光束反射误差系数表示为 K:;。表 3 列出了所有参与者的 K:; 值。这些值介于约 0.4% 和 0.04% 之间。对于光泽样品,镜面反射率通常在 4% 左右。因此,对于光泽样品,总反射率永远不会低于 4%,即使是黑色光泽样品也是如此。因此,对于参与者的结果,反射率始终至少是镜面光束误差的 10 倍。
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能通过在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像来开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]