摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像,从而开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
另一种策略是使用时间分辨 NIRS (trNIRS) 来增强测量的深度灵敏度,该方法使用皮秒光脉冲和快速探测器来记录漫反射光子的飞行时间 (DTOF) 分布。9 由于 DTOF 包含时间和强度信息,因此可以分辨不同深度的吸收变化,因为光子到达时间与路径长度成正比。最流行的深度增强方法基于计算 DTOF 的统计矩 10、11 或在时间窗口/门内积分光子计数。12、13 在这两种情况下,目标都是关注晚到达的光子,因为它们最有可能探测到大脑。先前使用分层组织模拟幻影、动物模型和人类受试者的研究表明,与传统的 CW NIRS 相比,trNIRS 对脑血流动力学具有更高的灵敏度。13 – 17
图 1-b 显示了 n-Si 的衍射图案样品。它不同于n-Si的衍射图案具有 SiO 2 层的样品,在 X 射线衍射图上 2θ≈17.4° 处没有漫反射,结构反射 (111) α 的强度分别降低了 2.5 倍、三阶 (333) α 的强度降低了 1.7 倍,结构反射 (002) 的强度降低了,反射 (313)、(513) 和 (620) 的强度也增加了几个百分点,它们在 n-Si 衍射图谱的光谱中产生了衍射偏移样品在较小角度的一侧。晶粒尺寸和晶格参数由 n-Si 的 (111) 结构线的半宽度确定分别为 58 nm 和 а Si =0.5419 nm,略小于样品 n -Si 的晶格参数(а Si =0.5426 nm)SiO 2 层。但这会导致 n-Si 结构反射发生偏移衍射图案朝向较小的散射角。
内布拉斯加大学林肯分校机械与材料工程系,内布拉斯加州林肯市,美国 通讯作者 – Joseph A. Turner,电子邮件 jaturner@unl.edu。注:Haitham Hadidi 的当前地址是沙特阿拉伯吉赞大学机械工程系,吉赞,吉赞 45142。摘要 金属混合增材制造 (AM) 工艺适合于制造可提高工程性能的复杂结构。混合 AM 可用于制造功能梯度材料,通过完全耦合的制造工艺和/或能源的协同组合,可在整个领域内产生微观结构和材料特性的变化。工程设计和制造空间的这种扩展对无损评估提出了挑战,包括评估无损测量对功能梯度的灵敏度。为了解决这个问题,使用线性超声测量来检测三种制造方法制成的 420 不锈钢试样:锻造、AM 和混合 AM(定向能量沉积 + 激光喷丸)。将波速、衰减和漫反射结果与试样沿构建/轴向的显微硬度测量值进行比较,同时使用微观结构图像进行定性验证。超声波测量结果与破坏性测量结果相得益彰,分辨率没有任何实质性损失。此外,超声波方法被证明可有效识别混合 AM 试样上的弹性特性和微观结构的梯度和循环性质。这些结果突出了超声波作为混合 AM 样品高效且易于获取的无损表征方法的潜力,并为 AM 中的进一步无损评估决策提供信息。
摘要:最近出现了几种合成方法,将高表面积固态有机骨架材料开发成具有永久孔隙率的自由流动液体。这些多孔液体 (PL) 材料的流动性使它们在某些储存和运输过程中具有优势。然而,大多数基于骨架的材料需要使用低温来储存弱结合气体(例如 H 2 ),而在该温度下 PL 会失去流动性。基于共价有机骨架 (COF) 的 PL 可以在接近环境温度的条件下与 H 2 可逆地形成稳定的复合物,这将代表气体储存和运输应用的有希望的发展。我们在此报告一种基于负载 Cu(I) 的 COF 胶体的具有这些卓越特性的材料的开发、表征和评估。我们的合成策略需要使用原子转移自由基聚合 (ATRP) 来定制条件以在 COF 胶体周围生长坚固的聚(二甲基硅氧烷)-甲基丙烯酸酯 (PDMS-MA) 涂层。我们展示了对胶体COF涂层厚度的精准控制,并通过透射电子显微镜和动态光散射进行了量化。随后,将涂覆的COF材料悬浮在液体聚合物基质中,制成PL。CO 2 等温线证实,涂层在自由流动液体中保留了COF的总体孔隙率;而采用漫反射红外傅里叶变换光谱 (DRIFTS) 进行的CO吸附测量证实了Cu(I)配位点的保留。随后,我们使用DRIFTS和程序升温脱附测量评估了基于Cu(I) − COF的PL中的气体吸附现象。除了证实这些材料可以在温和制冷温度下或接近温和制冷温度下进行H 2 传输外,我们的观察还表明,H 2 扩散受到涂层和液体基质的玻璃化转变温度的显著影响。后者结果强调了PL在通过涂层成分调节气体扩散和储存温度方面的另一个潜在优势。
仪器 EP05、EP7、EP11、TM16.1、TM16.2、TM16.3、TM110、TM112、TM132、TM140、TM154、TM182、TM183、TM190、TM203 - 分光光度计 高级测试仪器 EP10 - 分光光度计(包括漫反射/O° 镜面反射的几何形状) 高级测试仪器 EP10、TM61、TM190 - 特氟龙氟碳垫圈 SDL Atlas Testfabrics, Inc. 高级测试仪器 EP10、TM61、TM86、TM132、TM162、TM187、TM190-加速洗涤机 SDL Atlas 高级测试仪器 EP10、TM61、TM86、TM162、TM190 - 不锈钢钢制杠杆锁罐(1 型和/或 2 型) SDL Atlas 高级测试仪器 TM008 - 标准摩擦色牢度仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM106、TM107、TM163 - 汗渍测试仪 SDL Atlas Testfabrics, Inc. 高级测试仪器 TM015、TM26、TM106、TM107- 传统实验室对流干燥箱 SDL Atlas 高级测试仪器 TM016.1、TM16.2、TM16.3 - 由接近于零透光率的材料制成的测试罩,适用于多种曝光等级,如 10、20、40 等。 AFU Testfabrics, Inc. Q-Lab Corporation 高级测试仪器 TM016.1、TM16.2、TM16.3-卡片纸:163 g/m2 (90磅)一层,白色布里斯托指数 SDL Atlas Testfabrics, Inc. 先进测试仪器 TM016.1-日光曝光柜 Q-Lab Corporation 先进测试仪器 TM016.2、TM16.3、TM111、TM186-黑板温度计 Q-Lab Corporation 先进测试仪器 TM016.2-封闭式碳弧灯 先进测试仪器 TM016.3-黑色标准温度计 Q-Lab Corporation 先进测试仪器 TM020A - 刚性安装卡:非吸水纱线样品安装卡,用于环氧树脂安装方法 TM020A-1 加仑真空室,带泵,能够维持至少 25 英寸汞柱的真空压力。 TM020A-2 件式可铸造安装夹,1.5 英寸 TM020A-背胶砂轮,10 英寸(粒度:120、240、320、400、600、800、1200) TM020A-光纤切割器:由两个刀片、一个螺纹销和一个将刀片牢固固定到位的组件组成的装置。该装置通过垂直向下施加压力来操作。它可将纤维切割成大约 250 微米长 SDL Atlas TM020-差示扫描量热仪 TM020-微型 FTIR 仪器 TM023、TM164-暴露室,适用于容纳氮氧化物并维持恒定的高温和相对湿度 SDL Atlas TM026 - 蒸汽机,配有适当的控制装置,可实现均匀的蒸汽流量和温度 TM027 - 轧棉机(小型)或家用绞干机 SDL Atlas TM030-计数室适用于测定孢子浓度,例如血细胞计数器 TM061 - 预热器/储存模块高级测试仪器 TM061、TM86 - 不锈钢球 SDL Atlas Testfabrics, Inc.高级测试仪器 TM061-用于将罐固定在洗衣机轴上的适配器板 SDL Atlas 高级测试仪器 TM066 - 模板 (40 x 15mm) 高级测试仪器 TM066、TM76、TM84-调节和测试室 SDL Atlas 高级测试仪器 TM076 - 尺寸合适的矩形扁平金属表面,可用作电极
2.1 典型的太阳光谱分布显示 PV 感兴趣的区域 。.....................3 2.2 各种 PV 材料的相对光谱响应函数。.....................4 2.3 用于光伏材料评估的不同实验室灯的光谱分布。...........5 2.4 太阳光谱分布随大气质量增加的变化 M ......................6 2.5 太阳几何定义,包括法线角、天顶角、入射角和方位角 ............7 3.1 光学滤波器参数 ....................。。。。。。。。。。。。。。。。。。。。。。。。.......11 3.2 使用公式 (4) 时指示辐照度与真实辐照度变化示意图 ..........14 3.3 使用二极管阵列和扫描光栅光谱仪测量的 Spire 2 40A 的相对光谱分布与校准灯光谱的比较 ....................15 3.4 阵列光谱辐射计数据收集时序图 .........................16 3.5 带有 3 个误差线的光谱辐照度灯数据标准 ........................19 3.6 NREL 光谱辐射校准照片 ...............................2 2 3.7 NREL 光谱辐射计相隔六个月的校准文件比率 ..........2 3 3.8 汞氩灯的发射光谱显示用于波长校准的线条 .2 4 3.9 由于校准期间过量的(反射的)辐射到达输入光学器件导致白炽灯的光谱分布失真 ......................... ; .......2 5 4.1 氙源的光谱分布、ASTM E-892 全局光谱以及 CIS 和非晶硅电池的光谱响应,用于光谱失配计算 .............2 6 4.2 白炽灯源的CIS和非晶硅光谱响应和光谱辐照度曲线 ............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..29 4.3 NREL 参考电池校准测量系统框图 ...............3 2 4.4 NREL 样品光谱响应报告 ..。。。。。。。。。。。。。。。。。。。。。。。。.................3 3 4.5 用于 Sandia/NIST 校准程序的设备示意图 ...................3 4 5.1 典型的绝对腔辐射计设计 .........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4 1 5.2 使用绝对腔辐射计参考的典型日射计响应度与一天中的时间。注意响应度有 1.2% 的差异... ................................... 44 5.3 遮光-非遮光日射强度计校准信号时间序列 .......< div> 。。。。。。。。。...... div>......4 5 5.4 示意图日射强度计的分量总和校准。................. div>....4 6 5.5 ' 典型太阳辐射计响应度响应与天顶角 . < /div>................. div>.........4 7 5.6 与图相同型号太阳辐射计的响应度与天顶角的关系。5.5 ........... div>....4 8 5.7 三纬度倾斜 NREL 光伏系统太阳辐射计与四季晴空的纬度倾斜参考太阳辐射计。.........。。。。。。。。。。。。。。。。。。。。.49 5.8 与 5.7 类似,但适用于部分多云条件 .....................................50 5.9 与图 5.7 和 5.8 类似,但阴天条件除外。.........................5 1 5.10 由晴空分量总和(直射光计/漫反射)数据生成的 NREL 太阳辐射计方位角-仰角响应图 ..。。。。。。。。。。。。。。。。。。。。。。。。.......5 2 5.11 未补偿的 50 结 T 型热电偶的温度响应非线性。还显示了补偿网络的响应。.................5 3 5.12 Eppley Laboratories 温度补偿网络示意图 ...................5 4 5.13 典型的 Eppley PSP 和 Kipp 和 Zonen 温度响应数据 ................5 4 5.14 单个 Eppley PSP 日射强度计的重复温度响应结果 ............5 5 6.1 用于 NREL 标准化室外测量系统的日射强度计支架,用于 PV 模块性能测试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。..5 8 6.2 NREL 户外测试设施使用的光伏系统日射强度计安装方案示例 ..60 6.3 用于评估光伏模块能量生产能力的拟议方法流程图 ........6 1 6.4 辐射数据的月/小时平均数据报告样本 .........................6 3 6.5 NSRDB 每小时数据格式注释示例 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 4