摘要 漫射光学领域提供了一套丰富的神经光子工具,可以无创地测量人脑。干涉检测是该领域最近出现的令人兴奋的方法学发展。该方法对于测量与血流有关的漫射波动信号尤其有前景。得益于廉价的传感器阵列,干涉方法已经显著提高了吞吐量,可以更快、更深入地测量脑血流。干涉方法还可以实现飞行时间分辨率,提高采集信号的准确性。我们提供了干涉漫射光学这一新兴领域近期研究的历史视角和总结。我们预测,干涉技术与现有规模经济的融合将在未来几年推动许多进步。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分需要完全署名原始出版物,包括其 DOI。 [DOI: 10.1117/1.NPh.10.1 .013502 ]
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能通过在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像来开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
摘要。光电子学的最新进展首次使可穿戴和高密度功能性近红外光谱 (fNIRS) 和漫反射光学断层扫描 (DOT) 技术成为可能。这些技术有可能在几乎任何环境和人群中以与 fMRI 相当的分辨率对人类皮层进行功能性神经成像,从而开辟现实世界神经科学的新领域。在这篇观点文章中,我们简要概述了可穿戴高密度 fNIRS 和 DOT 方法的历史和现状,讨论了当前面临的最大挑战,并提出了我们对这项非凡技术未来的看法。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可出版。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.10.2.023513]
作为功能接口的光学神经成像系统的最新进展增强了我们对大脑神经活动的理解。高密度漫射光学地形(HD-DOT)使用多距离重叠通道来提高图像的空间分辨率,可与功能性磁共振成像(fMRI)相媲美。源和探测器(SD)阵列的拓扑结构直接影响 HD-DOT 成像模态中血流动力学重建的质量。在本文中,通过展示基于分析方法的模拟设置,研究了不同 SD 配置对脑血流动力学恢复质量的影响。鉴于 SD 排列决定了雅可比矩阵的元素,我们得出结论,该矩阵中的各个组件越多,检索质量就越好。结果表明,多距离多方向(MDMD)排列在雅可比阵列中产生更多独特元素。因此,逆问题可以准确地检索漫射光学地形数据的大脑活动。
脑电图 (EEG) 和弥散光学断层扫描 (DOT) 是广泛用于神经成像的成像方法。虽然 EEG 的时间分辨率很高,但空间分辨率通常有限。另一方面,DOT 具有高空间分辨率,但时间分辨率本质上受到其测量的缓慢血液动力学的限制。在我们之前的工作中,我们使用计算机模拟表明,当使用 DOT 重建的结果作为 EEG 源重建的空间先验时,可以实现高时空分辨率。在这项工作中,我们通过以比 DOT 时间分辨率更快的速度交替闪烁两个视觉刺激来实验验证该算法。我们表明,使用 EEG 和 DOT 的联合重建可以清楚地在时间上解析这两个刺激,并且与单独使用 EEG 的重建相比,空间限制得到了显着改善。
血液的氧合水平调节了可以在头皮处的光传感器传播并随后检测到的红外光量。在人类中更突出的神经影像学方法,血液氧化水平依赖性(粗体)功能磁共振成像(fMRI)3还测量了血液动力学反应,并且已经在认知神经科学,4种翻译药物和临床实践中看到了广泛的应用。5与fMRI相比,功能性近红外光谱(FNIRS)具有更高的运动性和耐受性,更高至可比的时间分辨率,但空间分辨率较小,视野和信噪比(SNR)。6,7由于其相对优势,FNIRS领域已迅速发展为许多认知神经科学和转化医学研究领域8,9在过去几十年中。在近年来,FNIRS还用于构建非侵入性大脑 - 计算机界面(BCI)10,11个通信系统,允许使用大脑活动来控制计算机或其他外部执行器,12在神经生理学,神经疗法,神经疗法中具有潜在的应用,由于其非侵入性和潜在的性质,因此具有13-15个消费产品。传统的CW-FNIRS成像使用NIR来源的稀疏排列 - 检测器(SD)调查,导致空间分辨率明显低于fMRI。17 - 2116漫射光学层析成像(DOT)17 - 19和高密度点(HD-DOT)的最新发展,20,21,使用越来越多的NIR光源和探测器来提供目标对象的重叠空间采样,从而改善了模态的空间分辨率急剧解决方案,并具有三位生功能的范围,并具有较高的功能。16漫射光学层析成像(DOT)17 - 19和高密度点(HD-DOT)的最新发展,20,21,使用越来越多的NIR光源和探测器来提供目标对象的重叠空间采样,从而改善了模态的空间分辨率急剧解决方案,并具有三位生功能的范围,并具有较高的功能。
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11