相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
相变材料 (PCM) 广泛应用于多种用途,尤其是在潜热热能存储系统 (LHTESS) 中。由于 PCM 的导热系数非常低。少量质量分数的混合纳米颗粒 TiO 2 -CuO (50%–50%) 分散在 PCM 中,其质量浓度分别为 0%、0.25%、0.5%、0.75% 和 1% ,以提高其导热系数。本文重点介绍用于 LHTESS 的混合纳米 PCM (HNPCM) 的热性能。开发了一种基于焓-孔隙度技术的数值模型来求解 Navier-Stocks 和能量方程。对壳管式潜热存储 (LHS) 中 HNPCM 的熔化和凝固过程进行了计算。开发的数值模型已通过文献中的实验数据成功验证。结果表明,分散性杂化纳米粒子提高了HNPCM的有效热导率和密度,当HNPCM的质量分数增加0.25%、0.5%、0.75%和1%时,平均充电时间分别提高了12.04%、19.9%、23.55%和27.33%,储能分别降低了0.83%、1.67%、2.83%和3.88%,放电时间分别缩短了18.47%、26.91%、27.71%和30.52%。
潜热存储系统用于将局部环境的温度保持在恒定范围内。该过程通过嵌入形状稳定剂的相应相变材料在冻结/熔化过程中释放/存储潜热来实现,形状稳定剂是使相变材料保持熔融状态的支架。在这项工作中,选择了高硅 ZSM-5 及其改性版本作为分子和聚合物相变材料(即月桂酸和聚乙二醇)的形状稳定剂,使用溶剂辅助真空浸渍进行浸渍。主要微孔类似物(母体 ZSM-5 及其酸处理衍生物)对每种相变材料的吸收率限制为 40%。相比之下,富含中孔的类似物(在碱性条件下形成)的月桂酸浸渍率达到 65%,聚乙二醇浸渍率达到 70%,且在 70 ◦ C 时无任何泄漏,导致每种复合材料的潜热分别为 106.9 J/g 和 118.6 J/g。一个简单的原型实际应用表明,制备的富含中孔的 ZSM-5 月桂酸和聚乙二醇复合材料在太阳能加热下可将其温度保持比周围环境低 27% 和 22%,而在太阳能加热停止时可将其温度保持高 20% 和 26%。所提出的研究结果表明,中孔富集提高了这些低成本、无毒沸石形状稳定剂对相变材料的吸收,因此使它们成为解决家庭环境加热/冷却过程中能量损失的隔离材料的良好候选者。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
对于固/液相变,相变材料 (PCM) 可细分为两大类:无机物质和有机物质。7 无机物质包括盐水合物、盐、金属和合金,而有机物质包括石蜡、非石蜡和多元醇。有机非石蜡包括多种物质,如脂肪酸。此外,无机和/或有机物质的共晶混合物也可用作 PCM。8 大量有机和无机物质的熔点在技术相关范围内,且熔化焓较大。然而,除了具有合适的熔点外,大多数 PCM 都不符合合适存储介质的标准 9,因为它们的熔化焓太低、具有腐蚀性或价格太贵。Zalba 等人最近对合适的 PCM 进行了概述。10 在本研究中,我们重点关注盐水合物。与石蜡和脂肪酸类似,它们的熔化温度在 0°C 至 100°C 之间。脂肪酸被排除在外,因为它们的价格比石蜡高出三倍。8 与石蜡相比,盐水合物有几个优点 11 :
a 沙特阿拉伯哈伊勒大学工程学院工业工程系;b 伊拉克巴格达巴格达大学能源工程系;c 伊拉克卡尔巴拉瓦里斯安比亚大学工程学院;d 伊朗德黑兰塔比亚特莫达雷斯大学机械工程系;e 伊拉克巴格达法拉希迪大学医疗器械工程系;f 伊拉克巴士拉巴士拉石油天然气大学石油天然气工程系;g 加拿大自然资源部 CanmetENERGY 研究中心,加拿大渥太华;h 英国诺丁汉大学电力电子、机械与控制 (PEMC) 研究组;i 英国曼彻斯特大学工程学院流体与环境系曼彻斯特 CFD 团队
摘要:减少能源消耗、碳足迹、设备尺寸和成本是即将出台的能源密集型行业路线图的关键目标。从这个意义上讲,废热回收等解决方案可以复制到不同的行业(例如陶瓷、混凝土、玻璃、钢铁、铝、纸浆和造纸),因此受到大力推广。在这方面,潜热储能 (TES) 作为一种创新技术解决方案,通过回收和储存工业废热来提高整个系统的效率。为此,通过决策支持系统 (DSS) 协助选择相变材料 (PCM)。基于最相关系统参数之间的相关性,开发了一种基于 MATLAB ® 模型的简化工具,以证明跨部门方法的可行性。研究工作进行了参数分析,以评估 PCM-TES 解决方案在不同工作条件和行业下的技术经济性能。此外,还进行了多标准评估,比较了金属合金和无机水合 PCM 盐的工具输出。总体而言,无机 PCM 表现出更高的净经济和能源节约(高达 25,000 欧元/年;480 兆瓦时/年),而金属合金则具有良好的结果、更短的周期和具有竞争力的经济比;其商业发展仍然有限。
1 伊拉克大学工程学院电气工程系,巴格达 10071,伊拉克;farqad_alani@yahoo.com 2 加尔米安大学教育学院物理系,卡拉尔 46021,伊拉克;hayder.i.mohammad@garmian.edu.krd 3 巴格达大学能源工程系,巴格达 10071,伊拉克;hussein.alnajjar@coeng.uobaghdad.edu.iq (HMTA-N.);jasim@siu.edu (JMM) 4 跨学科研究中心,药理学系,萨维塔医学和技术科学研究所,萨维塔牙科学院,萨维塔大学,钦奈 600001,印度; Lakshmi@saveetha.com 5 放射学和医学成像系,应用医学科学学院,萨坦·本·阿卜杜勒阿齐兹王子大学,Al-Kharj 11942,沙特阿拉伯;m.alhassen@psau.edu.sa 6 堪培拉大学健康学院,堪培拉,ACT 2600,澳大利亚 7 库姆理工大学机械工程系,库姆 3718146645,伊朗;ebrahimnataj.m@qut.ac.ir 8 加拿大自然资源部 CanmetENERGY 研究中心,加拿大安大略省渥太华 K1A 1M1 9 食物链可持续能源利用中心,能源未来研究所,伦敦布鲁内尔大学,Kingston Lane,Uxbridge,Middlesex UB8 3PH,英国pouyan.talebizadehsardari@brunel.ac.uk (PT)
化石燃料已在社会各个方面广泛使用。然而,近年来,由于世界化石能源在世界范围内的不足供应,太阳能的有效使用和新的储能材料的准备已成为全球问题。1 - 4全球经济发展和人口增长将导致持续的能源危机。太阳能是世界上最有希望的可再生能源之一,但其应用受到许多特征,例如间歇性和无法控制的特征。幸运的是,相变材料(PCM)可以通过改变相位状态来存储潜热,并在需要时释放能量,5,6和太阳能和PCM的组合创建了一个非常适合增加太阳能利用率的潜热存储系统。当温度达到PCM的熔点时,PCM可以融化以潜热的形式储存热量,当温度低于熔点以下时,PCM可以凝固以将潜热释放回热量存储层。既可以在白天和夜间之间降低热存储系统的最高温度差异,又可以增加太阳能热储存系统的热量存储能力。因此,已广泛研究了适合太阳能的相变材料。7 - 11
M 值,潜热存储:27、35、55 或 75 BTU/ft² 库存设计温度:73°、76°、79°、(73/76)°F(库存)特殊订单熔点:-60°F 至 +350°F BioPCM® 比热:2.0– 2.5 J/gK 潜热:27–75 BTU/lb。毯子重量:0.30 至 0.80 磅/平方英尺 屋顶应用 – 100% 覆盖率 M 值,潜热存储:55 或 75 BTU/平方英尺 建议设计温度:85-100°F / 29-38°C(订购时请高于目标调节空间温度 ~25-35°F) 毯子重量:0.60 至 0.80 磅/平方英尺 外墙应用 – 外墙净覆盖率为 50-75% M 值,潜热存储:27、35 或 55 BTU/平方英尺(对于太阳辐射增益较高的墙体,建议使用 M51) 建议设计温度:~ 76°F / 25°C 或 84°F /29°C,(订购时请高于目标调节空间温度的下一个库存温度) 毯子重量:0.30 至 0.75 磅/平方英尺