光声光谱法测量了通过声学检测对吸收的电磁能,尤其是光的影响。它基于光声效应。当周期性中断的光束入射在材料目标上时,它会产生声波,其周期性及其强度取决于光吸收以及随后材料中的非辐射衰变。这种现象被称为“光声效应”,是亚历山大·格雷厄姆·贝尔(Alexander Graham Bell)在1880年发现的,试图通过阳光束传输声音。贝尔通过安装薄薄的Lampbrack来代替横向线,并通过听力管来代替望远镜,以证明声音是在电磁谱的所有波长中产生的,但是它的响度是光谱强度[1]。
建议在11-12岁的美国青少年进行摘要HPV疫苗接种,如果该系列在15岁之前开始,则需要两次与三剂。我们评估了如何谈论推荐的年龄或更少的剂量会激发按时的HPV疫苗接种。我们的国家,在线实验随机分配了1,263名Ado Lescents的父母,以查看有关HPV疫苗接种建议或没有消息的三个消息之一。框架指南的消息是建议:11-12岁的疫苗接种;对于11-12岁开始疫苗接种的人来说,剂量较少;或者,对于在15岁之前开始疫苗接种的人的剂量较少。然后,我们评估了父母对HPV疫苗接种的首选年龄,将限制≤12岁的偏好定为按时。与“ 11-12岁”相比,没有更多信息的父母通常更喜欢按时的HPV疫苗接种(63%vs. 43%,p <.05),并且与观看“ 11-12岁剂量较少剂量的较少剂量”的父母(63%vs. 64%,第64%,第64%,第64%,p> .05)没有差异。父母看过“ 15岁之前剂量少的剂量”的父母不太喜欢按时疫苗接种(39%,p <.05)。建议在11-12岁时举行的HPV疫苗接种,鼓励按时疫苗接种,而剂量更少的影响很小。提供者应避免参考15岁的HPV疫苗接种指南,因为这样做可能会通过引入有关建议年龄的混乱来阻止按时疫苗接种。
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
2,4-二甲基苯酚(2,4-DTBP)是一种重要的商业抗氧化剂和有毒的天然二级代谢产物,已在人类中检测到。但是,关于其毒理学作用的信息很少。我们询问2,4-DTBP是否是潜在的肥胖原。使用人间充质干细胞脂肪形成测定法,我们发现暴露于2,4-DTBP导致脂质积累和掺杂标记基因的表达增加。拮抗剂测定法表明,通过激活过氧化物酶体增殖物激活受体(PPAR)γ-肉变素X受体(RXR)异二聚体来增加脂质的积累。2,4-DTBP可能通过激活RXRα而不是直接与PPARγ结合来激活PPARγ /RXRα异二聚体。我们通过求解该复合物的晶体结构直接与RXRα直接结合,然后预测并证明相关化合物也可以激活RXRα。我们的研究表明,2,4-DTBP及相关化学物质可以通过RXR充当肥胖症和内分泌干扰物。这些数据表明,2,4-DTBP属于一个化合物家族,其内分泌干扰和肥胖作用可以通过其化学成分强烈调节。结构活性研究,例如当前的研究,可以帮助指导不与对人类发育和生理具有广泛影响的重要核受体相互作用的更安全的抗氧化剂的合理发展。
大量能源使用。几乎没有足够的空间来进一步改善电力转换,当需要在白天的可见度时,功耗变得特别高。解决这一问题的能量浪费的解决方案是使用反射性显示,也称为“电子纸”,这仅反映了环境光。这会导致功耗极低,[1]提高了明亮环境中的可见性和潜在的健康益处。[2]最近,出现了一个新的研究方向,重点是对等离子体结构颜色的积极控制[1,3],而电子纸是该领域的一个重要应用。但是,无论是否使用等离子纳米结构,证明其具有与散发性显示的性能相当的电子纸非常困难。[4]广泛的商业设备基于电泳墨水[5](Amazon Kindle等)且颜色模式下的图像质量差,这是通过包含红色,绿色和蓝色(RGB)滤镜的子像素来实现的。[6]此外,慢速开关(≈1s)可防止视频播放 - 将用法限制在电子阅读器和简单标签等应用程序中。电视技术是一种重要的电子纸技术,因为它提供了视频速度,[7],但在商业上仍然无法使用。当电影和闪烁完全消失在≈50hz时,人眼认为> 20 Hz的刷新速率> 20 Hz。通过LCD显示器可以实现如此快速的刷新率,但是在反射构型中,图像可见度[8](绝对反射率<15%)。有机和无机电致色素材料已成为可见光谱区域上高对比度极化独立转换的强大候选者[9],但是它们的响应时间通常太慢了视频显示的速度(对于过渡金属氧化物而言,数百个MS甚至更多)。通常认为,尽管结构颜色对于电致色素设备来说是非常有趣的,但是对于视频应用来说,开关不能足够快,尤其是如果对比度应该很高(≈50%的绝对反射率或传输变化50%)。对于导电聚合物,开关速度的局限性主要归因于在掺杂过程中电解质和聚合物膜中离子相对较慢的“差异”。[10]存在一些例外,例如聚隔离线,已知可以很快地改变质子化状态。[11]
Mohammad Al Mahfuz 1,2,(成员,IEEE),Sumaiya Afroj 3,探险家Rahman 4,医学博士。Azad Hossain 2,(成员,IEEE),医学博士。Anwar Hossain 5,(IEEE高级成员)和MD Selim Habib 1,(IEEE高级成员)1电气工程和计算机科学系,佛罗里达技术学院,墨尔本,佛罗里达州佛罗里达州佛罗里达州32901,美国2孟加拉国1000号孟加拉国工程技术大学,孟加拉国4电子和电信工程系,拉杰沙希工程大学,拉杰沙希6204,孟加拉国5号电气与电子工程系
超薄暗物质(ULDM)是领先的良好动机候选者之一,在粒子物理学和宇宙学标准模型之外,许多理论中都预测了这些候选。在物理和天文实验中搜索ULDM的兴趣越来越多,主要假设ULDM和正常物质之间还有其他相互作用。在这里我们证明,即使ULDM仅具有重力相互作用,它也应引起太阳系中的引力扰动,该引力扰动可能足够大,可以在未来的重力波(GW)激光干涉仪中引起可检测的信号。我们研究了米歇尔森时间 - 时间延迟干涉仪对各种自旋的ULDM的敏感性,并通过针对μHz频率的空间基GW检测器来探测具有质量m mass10-18 eV的向量ULDM。我们的发现表明,GW检测器可能会直接探测一些质量范围,否则否则挑战了。