图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
图 1 | 单层 WSe 2 中的窄谱线。a,沉积有 WSe 2 单层的器件示意图。b,56 µ m × 56 µ m 面积上 1.525eV 至 1.734eV 能量范围内光致发光强度的等值线图。白色虚线标记了潜在的单层区域。c,4.5K 时 WSe 2 单层中局部发射极的光致发光光谱,随着激光功率的增加,显示出不同的发射行为,主要峰位于 1.7167eV(P1)和 1.7206eV(P2)。d,P1 和 P2 的提取线宽,以激发功率为函数绘制。低激发功率的光谱显示 P1 和 P2 的线宽分辨率有限。e,随着激光功率的增加,P1 和 P2 的光子发射积分计数显示出超线性和亚线性行为
Compact motorized beam expanders MEX 146 Compact motorized laser beam expanders MEX-V2 148 High-power motorized beam expanders MEX-HP 150 High-power motorized beam expanders MEX-HP-V2 152 Vertical motorized laser beam expander MEX-V 154 Variable beam expanders VEX and reducers VRE 156 Fixed ratio beam expanders FEX 158 Motorized laser power attenuators LPA 159先进的电动激光衰减器LPA-A 160手动激光衰减器LPA-M 161 OEM激光功率衰减器LPA-OEM LPA-OEM 162未极化的光束激光激光功率衰减器LPA-U LPA-U 163平面转换器FTC 164摩托车旋转器MRO 165摩托车Mro 165
卵子研究杂志。20,编号2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。 Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。 P. Giuria 1-710125都灵,意大利。 C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。P. Giuria 1-710125都灵,意大利。C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。C HYDERABAD大学海得拉巴大学500046的物理学学院。氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。这些模式的峰位置和FWHM经历了指示性变化。在不同暴露时间持续时间内具有激光功率的缺陷模式的强度比和(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖' - 𝐺𝐺𝐺𝐺)的变化分别表明边缘缺陷和氧化石墨烯的降低。这些结果扩大了对不同时间持续时间激光功率对氧化石墨烯特征的影响的理解。我们的研究提供了有关激光互动的定量信息。(2024年1月21日收到; 2024年4月8日接受)关键词:氧化石墨烯,缺陷,激光功率,拉曼光谱,平面内晶体大小(L a)1。简介氧化石墨烯是一种二维官能化透明岩片,含有连接在边缘和基础平面的功能分子的氧。氧化石墨烯已被广泛用于电化学超级电容器[1],生物医学[2],传感器[3],现场效应晶体管(FET)[4],燃料电池[5],锂电池[6],Polymer nanocomososes [7]。不同的方法,包括化学,热,水热,电化学和光化学还原,以减少官能团以实现石墨烯样结构,众所周知的石墨烯氧化石墨烯。通过去除不稳定的C = O键[8] Raman Spectroscoppy Analysis是一种非损害工具,可以从频谱参数中获得有关缺陷和疾病的知识,从而通过去除不稳定的C = O键来精确调整和量身定制缺陷[8],对缺陷进行了精确调整和剪裁,从而,对缺陷进行了精确调整和剪裁。通常,G波段是石墨烯片的特征,而D波段随着石墨烯片中的缺陷和疾病的增加而演变。通过对X射线衍射模式或样品的X射线光电光谱进行相应分析来量化拉曼光谱的变化来开发结构光谱相关性[9-11]。氧化石墨烯的拉曼光谱包含一阶带,其特征峰约为1350(D波段)和1580 cm -1(g波段),而在2700 cm -1左右的宽二阶频带。
光导板(LGP)是一个不可或缺的组件,可帮助从各种应用中从光源中分发照明。因此,LGP中微观结构模式的设计和质量在实现高发光效率和光均匀性方面起着重要作用。这项研究调查了使用CO 2直接激光结构在PMMA上使用CO 2直接激光结构,激光功率与激光扫描速度与微点形成之间的关系。此外,还使用亮度计评估了不同微点音高对亮度的影响。我们的发现表明激光功率的增加和激光扫描速度的降低导致较大的微点直径和更深的微点。结果还表明,音高越小,亮度读数越高。总体而言,研究中证明的低成本CO 2直接激光结构能够产生一致的微点模式直径和高度,这适用于质量产生中LGP的制造。
人们对用于制造和修复薄壁结构的定向能量沉积工艺的兴趣日益浓厚,这促使人们更深入地了解该方法的基本构造块的特性:覆层形成。在本研究中,研究了通过沉积 316L 不锈钢 (SS316L) 粉末获得的覆层,其中三个不同的工艺参数是激光功率、激光移动速度和粉末质量流速。通过每个参数的宽样本范围来确保可重复性。从数据测量来看,覆层的平均硬度接近 SS316L 材料的典型 200 Hv,表明 Hall-Petch 效应占主导地位。研究还表明:(i) 激光功率是影响覆层深度的最重要因素,但对覆层厚度影响不大。(ii) 激光移动速度是影响覆层高度的主要参数。 (iii) 粉末质量流速往往会通过厚度增加来补偿深度减少,因此对包层高度没有明显影响。观察到增加激光功率是防止在零稀释下形成包层的最有效方法,零稀释是衡量打印包层与基材结合程度的指标。从 SS316L 包层组得出了无量纲分析。通过使用不同的不锈钢数据集进行验证并推断到更大的参数范围,证明该分析能够促进工艺参数的选择,以满足对包层尺寸的给定要求。由于其应用直观,该分析有可能被用作标准的预打印工具,以提高成功率,从而改善制造周转时间。
摘要:为了确定制备基于CO的合金覆层层的最佳过程参数,基于最佳过程窗口和42CRMO作为底物进行了激光覆层CO基于基于的激光覆层CO合金的实验研究。使用方差分析(ANOVA)用于探索激光过程参数对最佳过程窗口范围内包层层的形成特性的影响。此外,通过灰色关系分析获得了最佳过程参数组合,并进行了优化结果的实验性验证。发现由最佳过程窗口确定的过程参数间隔为激光功率1300–2100 W,扫描速度6–14 mm/s和粉末喂养率17.90-29.84 g/min。每个过程参数的影响顺序为:激光功率>扫描速度>粉末进率。获得了激光功率2100 W的最佳过程参数,扫描速度为6 mm/s和粉末喂养速率17.90 g/min。最佳过程参数的实验性验证结果证明,与初始参数相比,优化参数的灰色相关等级提高了0.260,并且与预测值良好,精度为96%。优化后,横截面面积,宽度与高度的比率,覆层效率和覆层轨道的粉末利用率增加了4.065 mm 2、1.031、1.032、19.032和70.3%,以及70.3%的功能率降低了60.9%。最佳的覆层轨道在没有裂纹,孔和明显的元素分离的情况下很好地粘合到底物上,并包括Cr 3 C 7,COCX,FCC-CO和WC的阶段。
序号 激光功率,W 扫描速度,mm/s 层高,mm 热处理功率,W #1 45.2 2 0.05 0 #2 56.1 2 0.05 0 #3 45.2 4 0.03 0 #4 56.1 4 0.03 0 #5 45.2 2 0.05 30.5 #6 56.1 2 0.05 30.5 #7 45.2 4 0.03 30.5 #8 56.1 4 0.03 30.5
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
