摘要。本文讨论了随机激光器 (RL) 中的光收集问题。由于该系统发射的辐射由于其空间不相干性而呈朗伯辐射,因此设计、开发和测试了一种基于椭圆旋转镜的装置,以优化 RL 发射的辐射的收集。该系统提供了一种在多模光纤入口处注入发射能量的简单程序。所得结果表明,该装置的净能量效率为 35%,接近理论预期。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 Unported 许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.OE.60.1.010502]
为了满足未来对月球永久阴影区域的科学探索的发电需求,我们展示了一种新颖的激光功率传输方法。一支本科多学科学生团队汇集了电气工程、机械工程、计算机科学和光学方面的专业知识,以应对 NASA 的功率传输挑战。可以使用高效、高功率的激光器将功率从持续被阳光照射的陨石坑边缘传输到永久阴影陨石坑内部的远距离资产,那里预计有大量的水冰。扩展和准直光学器件用于减少十公里长距离的激光束发散。光束扫描系统以及资产上的回射器用于定位和跟踪具有象限光电探测器排列的移动资产。万向架式光伏接收器通过照明源进行跟踪,并将光能转换为电能,供资产的电池系统和其他科学仪器使用。定制印刷电路板跟踪光伏阵列的最大功率点,并为资产的电池充电提供电力。通过为移动探测车供电,展示了所有组件的全面集成。该项目研究了设计考虑因素、组件级性能测量、集成系统性能评估以及进一步改进系统的未来机会。此外,我们正在为同行评审的光学期刊准备一份出版物,详细介绍我们的系统和研究结果。
电视、电脑和智能手机的显示器在画质、清晰度和能效方面不断改进。激光显示器有望成为下一代显示器。特别是在亮度和色彩再现性方面,激光显示器有可能克服传统发光设备(如 OLED 和液晶)的固有局限性。
实施需要相当复杂的装置,以便进行一般[3]以及Mir Light的检测[4]。相反,由于该波长可以直接从TM 3 +掺杂的活性二氧化硅纤维中获得,并由Ingaas光二极管检测到[5],因此更容易访问2 µm频带。可以利用纤维激光系统的优势,包括它们对环境影响的可伸缩性和鲁棒性,我们开发了一种Thulium掺杂的纤维激光器(TDFL),可在1948 nm波长处进行560 FS长脉冲。使用各种可饱和吸收剂(SA)材料的模式锁定激光器,例如半导体SA镜(SESAMS)[6],碳纳米管(CNTS)[7,8]或Graphene [9] [9],都是良好的。这些材料非常有用,因为它们使模式锁定激光器
20. Santana, A.、Eres-Castellanos, A.、Jimenez, JA 等人。“层厚度和激光发射模式对增材制造马氏体时效钢微观结构的影响”,《材料研究与技术杂志》,第 25 卷,第 6898-6912 页 (2023 年)。DOI:10.1016/j.jmrt.2023.07.114。
理论:回收利用时,我们将事物拆除到其组成部分中,并将材料放回循环中,而不会损失任何质量。现实:大量的垃圾。我们如何按类型进行分类?Fraunhofer激光技术ILT ILT为此开发了一个新的过程:传感器使用激光发射光谱范围来识别在输送带上超过它的废料的化学成分。之后,使用人员或AI支持的自动系统用于排序。激光方法也适用于碎片废物,例如电子废物和车辆零件。它检测到有价值的原材料的最小数量,甚至只是合金成分,例如钼,钴或钨。使用激光检测器,比以前更多的材料可以找到回流的方法。
不可侵犯生长过程的缺陷。激光性能通常受到Ti3þ -Ti4Þ离子对8的光损失红外吸收带的限制,这些离子对8恰好发生在激光发射波长中。退火改善了成年晶体的质量。它允许将部分更改为ti3Þ,并改善所谓的功绩图(FOM),该图可以测量约500 nm的吸收系数与吸收系数相对于寄生虫Ti3Þ -Ti3Þ -Ti4Þ吸收带的吸收系数的比率。在本文中,大尺寸和高度Ti3Þ掺杂的Al 2 O 3单晶在RSA Le Rubis Company的Kyropoulos Technique(KT)成功生长,并执行了成年晶体的光学特征。
随机激光器,一个有趣的光子研究分支,通过利用混乱和增益培养基中的多个散射来产生激光发射。这些非常规激光器提供了潜在的优势,例如低成本的制造,宽光谱带宽和对外部扰动的抵抗力,但实现最佳性能需要对有助于其一代的因素有全面的理解。这项研究旨在通过对现有文献进行广泛审查来批判性地分析和评估这些因素。该研究主要关注材料特性,结构特征,光学泵送技术和影响随机激光产生的环境因素。我们的系统分析不仅会丰富对随机激光功能的当前理解,而且还为设计和优化这些激光器的各种应用程序(包括成像,传感和通信)提供了宝贵的见解。
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
量子井纳米层通常显示单模激光,因为增益饱和抑制了其他模式的排放。相比之下,对于带有gan量子井的低语画廊模式的微台面激光器作为活性材料,观察到高于阈值的多模激光发射。这种有趣的发射特征表现出了以下事实:几种模式同时在激光开始时显示了输入 - 输出曲线中的特征扭结。纳米层的量子理论用于支持实验发现,并在存在增益饱和的情况下分析这种行为。在相邻模式之间的耦合效应被鉴定为多模磁力的起源,该构图通过类似于经典波浪混合效应的种群脉动在模式之间启动光子交换。降低了这种类型的模式耦合,并显示了增加模式间距。结果可以为在集成光子电路中的多模层应用铺平道路。