尽管海军水面舰艇拥有多种防御水面舰艇、无人机 (UAV) 和反舰导弹的手段,5 但一些观察人士仍担心海军水面舰艇在与中国等装备大量无人机和反舰导弹(包括先进型号)的对手的潜在战斗中能否生存。 6 对这一问题的担忧导致一些观察人士得出结论,未来几年海军的水面舰队可能需要避免在这些武器射程内的水域作业。关于海军水面舰艇是否能够充分防御无人机和反舰导弹的观点可能会影响人们对花钱采购和运营此类舰艇是否划算的看法。
具有高光谱纯度的激光器可以实现多种应用空间,包括精密光谱、相干高速通信、物理传感和量子系统操控。目前,精心设计和构建的台式法布里-珀罗腔已经在主动激光线宽减小方面取得了显著成就,主要用于光学原子钟。然而,对在周围环境中高性能运行的小型化激光系统的需求日益增加。这里介绍了一种紧凑而坚固的光子原子激光器,它由一个 2.5 厘米长、20 000 精细度、单片法布里-珀罗腔和一个微机械铷蒸汽室集成而成。通过利用腔的短时频率稳定性和原子的长期频率稳定性,实现了能够集成以进行扩展测量的超窄线宽激光器。具体来说,该激光器支持 20 毫秒平均时间内 1 × 10 − 13 的分数频率稳定性,7 × 10 − 13
量子级联激光(QCL)系统已经成熟,并且在新一代产品的先锋范围内,这些产品支持军事应用,例如红外对策(IRCM)(IRCM)和目标。飞机平台的苛刻产品需求包括降低尺寸,重量,功耗和成本(SWAP-C)扩展到便携式电池供电的手持产品。QCL技术在整个中波(MWIR)和长波(LWIR)红外运行,以提供利用现有热成像摄像机的新功能。除了对飞机平台的适用性外,QCL产品非常适合满足操作员对小型,轻巧的指针和信标功能的需求。高功率,轻巧,电池操作的设备的现场测试已在一系列空气和地面应用中证明了它们的实用性。本演讲将介绍QCL技术以及由其启用的防御和安全产品和功能的概述。本演讲还将概述与基于QCL技术相关的产品相关的广泛环境和性能测试。
ASSL(高级固态激光器)是国际会议,致力于固态激光器的材料和来源方面的最新进展。材料包括光学,材料科学,凝结物理学和化学方面的进展,与激光和光子学新材料的开发,表征和应用有关。这些包括晶体,玻璃和陶瓷以及功能化的复合材料,从纤维和波导到具有预分配的光学特性的工程结构。相干和高亮度辐射源包括激光器以及泵和非线性设备。重点是科学技术的进步,以提高功率,效率,亮度,稳定性,波长覆盖范围,脉冲宽度,成本,环境影响或其他特定于应用的性能。我们希望读者能喜欢36个顶级文章的这一问题,这些文章强调了该领域的最新状态。我们感谢所有作者和审稿人的出色贡献。,我们还要感谢Optica员工的Carmelita Washington和Rebecca Robinson在整个启动此功能问题以及审查和生产过程中的出色工作。收益媒体是固态激光器的核心,新材料和相应的激光仍然是会议的核心。yb掺杂的材料是这次ASSL会议的重点,这尤其是由于在二极管泵送的YB掺杂激光器30周年的庆祝话题上。Qi等。Qi等。使用Yb:YAG的进步由Cvrček等人报告,在该磁盘几何形状中探索了对SIC的热点[1]。还报告了Yttrium铝硅酸盐纤维的制造,其Yb 3 + Yb:YB陶瓷纳米植物及其在单频纤维激光器中的应用[2]。Wu等人的浓度纤维的平均功率水平继续增加。在输出功率下,从掺杂的YB纤维中展示6.2 kW,光学至光学效率为82%,梁质量系数约为1.9
资料来源:欧盟。2020 年 11 月委员会报告 - 奥地利环境署和 Borderstep 研究所发布的节能云计算技术和生态友好型云市场的政策
在 (001) Si 平台上外延生长 III-V 激光器正成为低成本、节能和晶圆级光子集成电路的终极集成策略。随着在 III-V/Si 兼容衬底上生长的激光二极管的性能向商业化发展,外延 III-V 激光器和 Si 基波导之间的光接口问题变得越来越紧迫。作为替代方案,选择性区域生长在 Si 上产生无缓冲 III-V 激光器,从而从本质上促进与 Si 光子学的有效光耦合。由于选择性生长的无位错 III-V 晶体的尺寸通常限制在亚波长尺度,因此主要挑战在于实现电驱动激光器,特别是如何在不引起大的光吸收损失的情况下对金属触点进行图案化。在本篇观点中,我们简要概述了在 (001) Si 平台上选择性生长的最先进的 III-V 族激光器,并讨论了这种集成方法的前景,重点介绍了实现电驱动设备的前景。我们重点介绍了选择性异质外延提供的独特优势以及实际应用面临的挑战和潜在解决方案。
在无线通信方面,微波技术通过长期发展和大量投资,目前已形成强劲势头,并已成功满足目前正在部署的 5G 基础设施初始阶段的要求。然而,包括毫米波 (mmWave) 在内的微波解决方案在支持未来应用的更高带宽方面已达到物理上限。因此,太赫兹 (THz) 波段和中红外波段等更高频段涵盖了更宽的电磁频谱范围,有望成为突破此类限制的候选技术。[1,2] 目前已进行多项太赫兹波段高数据速率传输实验,其中许多实验借助了光子技术。[3 – 5] 另一方面,随着载波频率的提高和带宽的扩大,这些无线系统正在采用一种新模式,即信号以高增益导波的形式发射
直线加速器相干光源 X 射线自由电子激光器是一种复杂的科学仪器,每天会多次更改配置,因此需要快速调整策略来减少连续实验的设置时间。为此,我们采用贝叶斯方法通过控制四极磁铁组来最大化 X 射线激光脉冲能量。高斯过程模型为机器响应提供了相对于控制参数的概率预测,从而在寻找全局最优时实现了探索和利用的平衡。我们表明,可以从存档的扫描中学习模型参数,并且可以从光束传输中提取设备之间的相关性。结果是一个样本高效的优化程序,结合了历史数据和加速器物理知识,大大优于现有的优化器。
摘要:很少有模型可以研究人类中枢神经系统中的神经突损伤。我们在这里使用多巴胺能LUHMES神经元来建立一个培养系统,该系统允许(i)观察高度富集的神经突,(ii)为生化研究制备神经突级分的生化研究,以及(iii)轴突造口后神经酸盐标记物和代谢物的测量。luhmes的球体,在培养皿中镀以数千m的长度,而所有somata均保持聚集。这些培养物可以轻松地观察活的神经突或固定神经突。纯神经突(NOC)。通过确定其蛋白质和RNA含量来说明这种培养物的潜在应用。例如,线粒体TOM20蛋白高度丰富,而核组蛋白H3则没有。同样,在相对较高的水平上发现了线粒体编码的RNA,而在NOC中,组蛋白或神经元核标记NEUN(RBFOX3)的mRNA相对耗尽。NOC的另一种潜在用途是神经突变性的研究。为此,开发了一种量化神经突完整性的算法。使用此工具,我们发现烟酰胺的添加大大降低了神经突变性。另外,NOC中Ca 2+的螯合延迟了变性,而Calpains的抑制剂也没有作用。因此,NOC被证明适用于生化分析和在定义的切割损伤后研究变性过程。